We're Measuring Productivity Wrong

Abi Noda

"Knowing how to measure productivity or even define developer productivity has remained elusive."

Abi Noda, Nicole Forsgren, et al.

"Quantifying our impact is an existential challenge."

Chad Sanderson, Head of Platform at Convoy

Part 1: Measuring productivity is hard

Part 2: Why basic metrics aren't enough

Part 3: A better way to measure

"Defining productivity has been a challenge facing both researchers and practitioners."

Caitlin Sadowski, Google

Productivity =

Developers

noun

the state or quality of producing something, especially crops. "the long-term productivity of land"

/ prō dək tivədē, prädək tivədē/

CMQUEUE

March 6, 2021 Volume 19, issue 1

🔁 PDF

The SPACE of Developer Productivity

There's more to it than you think.

Nicole Forsgren, GitHub Margaret-Anne Storey, University of Victoria Research

Developer productivity is complex and nuanced, with important implications for software development teams. A clear understanding of defining, measuring, and predicting developer productivity could provide organizations, managers, and developers with the ability to make higher-quality software and make it more efficiently.

Developer productivity has been studied extensively. Unfortunately, after decades of research and practical development experience, knowing how to measure productivity or even define developer productivity has remained elusive, while myths about the topic are common. Far too often teams or managers attempt to measure developer productivity with simple metrics, attempting to capture it all with "one metric that matters."

One important measure of productivity is personal perception;¹ this may resonate with those who claim to be in "a flow" on productive days.

There is also agreement that developer productivity is necessary not just to improve engineering outcomes, but also to ensure the well-being and satisfaction of developers, as productivity and satisfaction are intricately connected. 12,20

Q		
Current Issue	Past Issues	Topics

Chandra Maddila, Thomas Zimmermann, Brian Houck, and Jenna Butler, Microsoft

FIGURE 1: E	XAMPLE METRICS	PERFORMANCE OF AN OUTCOME	BPIOCESS ASTIMITY COUNT OF	actions of outputs	ABURATION OCENTRES AND
INDIVIDUAL One person	 Developer satisfaction Retention[†] Satisfaction with code reviews assigned Perception of code reviews 	*Code review velocity	*Number of code reviews completed *Coding time *# Commits *Lines of code [†]	 Code review score (quality or thoughtfulness) PR merge times Quality of meetings[†] Knowledge sharing, discoverability (quality of documentation) 	 Code review timing Produc- tivity perception Lack of inter- ruptions
TE AM OR GROUP People that work together	*Developer satisfaction *Retention [†]	*Code review velocity *Story points shipped [†]	*# Story points completed [†]	 * PR merge times * Quality of meetings[†] * Knowledge sharing or discoverability (quality of documentation) 	*Code review timing *Handoffs
SYSTEM End-to- end work through a system (like a devel- opment pipeline)	*Satisfaction with engineering system (e.g., CII CD pipeline)	*Code review velocity *Code review (acceptance rate) *Customer satisfaction *Reliability (uptime)	*Frequency of deploy- ments	*Knowledge sharing, discoverability (quality of documentation)	 Code review timing Velocity/ flow through the system

[†] Use these metrics with (even more) caution — they can proxy more things.

"One failure mode I've seen is a leader comes in and says, 'DORA metrics across the board." Because it's an easy button."

Laura Tacho, Engineering Leadership Coach

DORA Dashboard

Lead time

Deploys per day

73

"Too many organizations spend effort building beautiful DORA dashboards that nobody looks at."

Nathen Harvey, DORA

"Every conference I go to feels like it's full of people talking about not just the DORA metrics but their shortcomings."

Brian Guthrie, VPE at Meetup

"We didn't intend to claim that these are the metrics that you should use."

Dr. Margaret-Anne Storey, Co-Author of SPACE

Part 1: Measuring productivity is hard

Part 2: Why basic metrics aren't enough

Part 3: A better way to measure

Lead time Issue cycle time WIPs Deployment frequency Pull request throughput Pull request cycle time Story points Change failure rate MTTR

SAFe[®] for Lean Enterprises

Lead time Issue cycle time WIPs Deployment frequency Pull request throughput Pull request cycle time Story points Change failure rate MTTR

Lead time Issue cycle time WIPs Deployment frequency Pull request throughput Pull request cycle time Story points Change failure rate MTTR

Manufacturing metrics

Lead time Total Cycle Time WIP Inventory/Turns On-Time Delivery to Commit Throughput Yield Capacity Utilization Reportable Incidents Schedule or Production Attainment Engineering Change Order Cycle Time

Source: Manufacturing Enterprise Solutions Association

Lead time Issue cycle time WIPs Deployment frequency Pull request throughput Pull request cycle time Story points Change failure rate MTTR

Manufacturing metrics

Lead time Total Cycle Time WIP Inventory/Turns On-Time Delivery to Commit Throughput Yield Capacity Utilization Reportable Incidents Schedule or Production Attainment Engineering Change Order Cycle Time

Source: Manufacturing Enterprise Solutions Association

Pounds of coal shoveled tells you which shovelers are the best; lines of code will not tell you which software developers are the best.

Collin Green & Ciera Jaspan, Google

DREAM

"Engineers tell me: 'I get it, the book *Accelerate* is great, but that's not the world I live in."

Max Pugliese, Director of Platform Engineering at Apple

Hard metrics don't tell you the full story

"Hard metrics tell you what developers are doing, but they don't tell you why."

Ciera Jaspan, Engineering Productivity Research at Google

Hard metrics don't tell you where to focus

Part 1: Measuring productivity is hard

Part 2: Why basic metrics aren't enough

Part 3: A better way to measure

Company

GitHub acquires Pull Panda—a better way to collaborate on code reviews

We've acquired Pull Panda to help teams create more efficient and effective code review workflows on GitHub.

Breakdown of merge time 🛽

Jan 13 Jan 20 Jan 27 Feb 3 Feb 10 Feb 17 Feb 24 Mar 2 Mar 9 Mar 16 Mar 23 Mar 30

	Quantitative metric	Goal
	PR cycle time	Knowing if
	Commit frequency	Knowing if
	Time to first review	Knowing ho
	Number of comments per review	Knowing th
-		

developers work on small changes.

developers stay in the zone while coding.

ow quickly code reviews get completed.

ne quality of code reviews being performed.

What if we just asked developers...

What if we just asked developers... a.k.a. qualitative metrics

Quantitative metric	Qualitative
PR cycle time	I work on s
	Never Rarely Sometimes Very often Always
Commit frequency	I have unin
	Never Rarely Sometimes Very often Always
Time to first review	I receive co
	Never Rarely Sometimes Very often Always

metric

mall, iterative changes.

nterrupted time for deep work.

ode reviews in a timely manner.

When using GitHub Copilot...

Perceived Productivity

la	m more	produc	tive	
100		240		660
0%	10%	20%	30%	40%

Efficiency and Flow*

Faster completion

Faster with repetitive tasks

More in the flow

Less time searching

Less mental effort on repetitive tasks

1	1	1	11	1	_
0%	10%	20%	30%	40%	

WHY USE A SURVEY

ow that we know our survey data can be trusted—that is, we have a reasonable assurance that data from our well-designed and well-tested psychometric survey constructs is telling us what we think it's telling us why would we use a survey? And why should anyone else use a survey? Teams wanting to understand the performance of their software delivery process often begin by instrumenting their delivery process and toolchain to obtain data (we call data gathered in this way "system data" throughout this book). Indeed, several tools on the market now offer analysis on items such as lead time. Why would someone want to collect data from surveys and not just from your toolchain?

There are several reasons to use survey data. We'll briefly present some of these in this chapter.

- 1. Surveys allow you to collect and analyze data quickly.
- 2. Measuring the full stack with system data is difficult.
- 3. Measuring completely with system data is difficult.
- 4. You can trust survey data.
- 5. Some things can only be measured through surveys.

∃: Q 🖹 Aa

CHAPTER 14

Linkedin

Google

"Surveys help you measure things that are in principle not measurable objectively."

Ciera Jaspan, Engineering Productivity Research at Google

"Qualitative metrics are your highest coverage information."

Max Kanat-Alexander, Principal Engineer at LinkedIn

"The human mind has remarkable advantages over mechanical measurements for assessing complex and ambiguous situations."

Douglas W. Hubbard, How to Measure Anything

	ponen
Component	Spe
Comprehension	Atte
	Rep
	Ider
	Linl
Retrieval	Gen
	Reti
	Fill
Judgment	Ass
	Dra
	Inte
	Mal
Response	Map
	Edit

Response

f the Response Process

c Processes

- to questions and instructions ent logical form of question y question focus (information sought) ey terms to relevant concepts
- te retrieval strategy and cues ve specific, generic memories missing details
- completeness and relevance of memories
- nferences based on accessibility
- te material retrieved
- estimate based on partial retrieval
- dgement onto response category sponse

"When we first started our survey, there was a lot of selling to execs like, 'this isn't just people's opinions, this is actually valuable data.""

Collin Green, Engineering Productivity Research at Google

Myth: Survey data is purely subjective

For the primary application or service you work on, what is your lead time for changes (that is, how long does it take to go from code committed to code successfully running in production)?

\mathbf{O}	More than six months	
\cap	One to six months	

- One week to one month
- One day to one week
- O Less than one day
- Less than one hour

Myth: Survey data is unreliable

IMPROVING SURVEY UESTIONS

Design and Evaluation

Floyd J. Fowler, Jr.

APPLIED SOCIAL RESEARCH METHODS SERIES

	Pros	Cons
Quant metrics	 Easy to measure Objective 	 Incomplete Lacks context
Qual metrics	 Holistic Tells you "why" 	 Difficult (design, participation, etc.)