
More Effective Testing
on Android Devices

by Aurimas Liutikas / Google



More Effective Testing
on Android Devices



Don’t - if you can avoid it



Best - JUnit tests on JVM

Pros

● Cacheable in most build systems

● Multiple orders of magnitude faster

● Nudges tests to unit test scope

Cons

● Requires refactoring to pure JVM projects / isolation from android.* APIs



Best - JUnit tests on JVM

Tips

● Run multiple tests at once maxParallelForks

● Gradle Enterprise test distribution



Robolectric

A framework for running Android tests on JVM.

Built from Android source code with additional fakes.

Google-employee maintainers, but not an Google-owned product



Good - Robolectric tests

Pros

● Cacheable

● Multiple orders of magnitude faster

● Able to test components that have Android tie-ins

● Easily fake system state (e.g. WiFi off)

Cons

● Not an accurate representation of a real Android device

● Google support is shaky



Good - Robolectric tests

Tips

● Cache system image downloads in CI

● Try to minimize Android API usage

● 4.10 support @GraphicsMode(NATIVE)



Okay - Activity-less on device

Pros

● Can be <100ms per test method

● Testing real Android behavior

Cons

● No caching* unless using Gradle Managed Devices (GMD) or custom runner

● Sharding on through multiple connected devices

● Flaky due to device instability



If you must - with Activity on device

Pros

● Testing real Android behavior

Cons

● Really slow

● No caching* unless using GMD or custom runner

● Sharding on through multiple connected devices

● Flaky due to device instability



Robolectric tests3

JUnit tests on JVM 4

UI tests1

Activity-less tests 2

Fidelity

Performance



Robolectric tests3

JUnit tests on JVM 4

UI tests1

Activity-less tests 2



Test Stability Highly Important

● Flaky JVM tests are bad, flaky Android tests are worse

● Disable/delete flaky tests as running them has high costs

● State clean-up (e.g. @After)

● Factory reset or Android User Profiles in custom lab



On Device Tips



Only run what you need

● AOSP system images

○ Disable noisy applications (adb shell pm disable-user)

● Automated Test Devices (ATD) images



Modularize Tests Along With Features

● Splitting tests allows to shard

● Less interference between tests



AndroidX case study



Build Time at Bay

https://dpesummit.com/chasing-the-speed-of-gradle-builds/



Test Time Continuing to Grow



Key Insight on APK checksums

Test results don’t change if both application and test APKs are the same

Combined with modularization → higher hit rate



Unstable APK generation

● baseline.profm (issuetracker.google.com/issues/231837768)

● shadow jar including incremental kotlin data (r.android.com/2089482)

● AndroidManifest.xml android:compileSdkVersionCodename 

(issuetracker.google.com/issues/277836549)

● r8 + API 34 record types regression



Unstable APK generation

● baseline.profm (issuetracker.google.com/issues/231837768)

● shadow jar including incremental kotlin data (r.android.com/2089482)

● AndroidManifest.xml android:compileSdkVersionCodename 

(issuetracker.google.com/issues/277836549)

● r8 + API 34 record types regression



Unstable APK generation

● baseline.profm (issuetracker.google.com/issues/231837768)

● shadow jar including incremental kotlin data (r.android.com/2089482)

● AndroidManifest.xml android:compileSdkVersionCodename 

(issuetracker.google.com/issues/277836549)

● r8 + API 34 record types regression



Unstable APK generation

● baseline.profm (issuetracker.google.com/issues/231837768)

● shadow jar including incremental kotlin data (r.android.com/2089482)

● AndroidManifest.xml android:compileSdkVersionCodename 

(issuetracker.google.com/issues/277836549)

● r8 + API 34 record types regression



Migration From Custom Lab to Firebase Test Lab

Caching

APK checksum result caching

Sharding

from n devices to run m APK sets → 1:1

Isolation

multiple APKs sets per device →dedicated device per APK set



Migration From Custom Lab to Firebase Test Lab

Caching

APK checksum result caching

Sharding

from n devices to run m APK sets → 1:1

Isolation

multiple APKs sets per device →dedicated device per APK set



Migration From Custom Lab to Firebase Test Lab

Caching

APK checksum result caching

Sharding

from n devices to run m APK sets → 1:1

Isolation

multiple APKs sets per device →dedicated device per APK set



Effects on 95th Percentile



Effects on Mean Time



What’s next?

● Replace FTL shard retries to per method retries

● Emulator stability work



Thanks!


