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Don't - if you can avoid it




Best - JUnit tests on JVM

Pros

e Cacheable in most build systems
e Multiple orders of magnitude faster
e Nudges tests to unit test scope

Cons

e Requires refactoring to pure JVM projects / isolation from android.* APls




Best - JUnit tests on JVM

Tips

e Run multiple tests at once maxParallelForks

e Gradle Enterprise test distribution




Robolectric

A framework for running Android tests on JVM.
Built from Android source code with additional fakes.

Google-employee maintainers, but not an Google-owned product




Good - Robolectric tests

Pros

Cons

Cacheable

Multiple orders of magnitude faster

Able to test components that have Android tie-ins
Easily fake system state (e.g. WiFi off)

Not an accurate representation of a real Android device
Google support is shaky




Good - Robolectric tests

Tips

e (Cache system image downloads in ClI
e Try to minimize Android APl usage
e 4.10 support @GraphicsMode(NATIVE)




Okay - Activity-less on device

Pros

e (Can be <100ms per test method
e Testing real Android behavior

Cons

e No caching* unless using Gradle Managed Devices (GMD) or custom runner
e Sharding on through multiple connected devices
e Flaky due to device instability




If you must - with Activity on device

Pros

e Testing real Android behavior

Cons
e Really slow
e No caching” unless using GMD or custom runner
e Sharding on through multiple connected devices
e Flaky due to device instability
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Test Stability Highly Important

e Flaky JVM tests are bad, flaky Android tests are worse
e Disable/delete flaky tests as running them has high costs
e State clean-up (e.g. @After)

e Factory reset or Android User Profiles in custom lab




On Device Tips




Only run what you need

e AOSP system images

o Disable noisy applications (adb shell pm disable-user)
e Automated Test Devices (ATD) images




Modularize Tests Along With Features

e Splitting tests allows to shard

e Less interference between tests




AndroidX case study




Build Time at Bay

Mean time spent per presubmit run
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https://dpesummit.com/chasing-the-speed-of-gradle-builds/



Test Time Continuing to Grow

Mean time spent per presubmit run
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Key Insight on APK checksums

Test results don’t change if both application and test APKs are the same

Combined with modularization — higher hit rate




Unstable APK generation

e Dbaseline.profm (issuetracker.google.com/issues/231837768)
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Unstable APK generation
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Unstable APK generation

e Dbaseline.profm (issuetracker.google.com/issues/231837768)

e shadow jar including incremental kotlin data (r.android.com/2089482)

e AndroidManifest.xml android:compileSdkVersionCodename
(issuetracker.google.com/issues/277836549)

e 8 + API 34 record types regression




Migration From Custom Lab to Firebase Test Lab

Caching

APK checksum result caching




Migration From Custom Lab to Firebase Test Lab

Caching
APK checksum result caching
Sharding

from n devices to run m APK sets — 1:1




Migration From Custom Lab to Firebase Test Lab

Caching

APK checksum result caching
Sharding

from n devices to run m APK sets — 1:1
Isolation

multiple APKs sets per device —dedicated device per APK set




Effects on 95th Percentile

Time spent per presubmit run (95th percentile)
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Effects on Mean Time

Mean time spent per presubmit run
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What's next?

e Replace FTL shard retries to per method retries

e Emulator stability work




Thanks!




