More Effective Testing
on Android Devices

by Aurimas Liutikas / Google

More Effective Testing
on Android Devices

Don't - if you can avoid it

Best - JUnit tests on JVM

Pros

e Cacheable in most build systems
e Multiple orders of magnitude faster
e Nudges tests to unit test scope

Cons

e Requires refactoring to pure JVM projects / isolation from android.* APls

Best - JUnit tests on JVM

Tips

e Run multiple tests at once maxParallelForks

e Gradle Enterprise test distribution

Robolectric

A framework for running Android tests on JVM.
Built from Android source code with additional fakes.

Google-employee maintainers, but not an Google-owned product

Good - Robolectric tests

Pros

Cons

Cacheable

Multiple orders of magnitude faster

Able to test components that have Android tie-ins
Easily fake system state (e.g. WiFi off)

Not an accurate representation of a real Android device
Google support is shaky

Good - Robolectric tests

Tips

e (Cache system image downloads in ClI
e Try to minimize Android APl usage
e 4.10 support @GraphicsMode(NATIVE)

Okay - Activity-less on device

Pros

e (Can be <100ms per test method
e Testing real Android behavior

Cons

e No caching* unless using Gradle Managed Devices (GMD) or custom runner
e Sharding on through multiple connected devices
e Flaky due to device instability

If you must - with Activity on device

Pros

e Testing real Android behavior

Cons
e Really slow
e No caching” unless using GMD or custom runner
e Sharding on through multiple connected devices
e Flaky due to device instability

£ Fidelity

‘ © Ultests
Activity-less tests @ .

v © Robolectric tests
JUnit tests on JVM @

v Performance

Activity-less tests @

JUnit tests on JVM @

4

© Ultests

© Robolectric tests

Test Stability Highly Important

e Flaky JVM tests are bad, flaky Android tests are worse
e Disable/delete flaky tests as running them has high costs
e State clean-up (e.g. @After)

e Factory reset or Android User Profiles in custom lab

On Device Tips

Only run what you need

e AOSP system images

o Disable noisy applications (adb shell pm disable-user)
e Automated Test Devices (ATD) images

Modularize Tests Along With Features

e Splitting tests allows to shard

e Less interference between tests

AndroidX case study

Build Time at Bay

Mean time spent per presubmit run

60
45
30
15
0 T T T T T T
Jan Jul Jan Jul Jan Jul
2021 2022 2023

= Mean Bottleneck Build Time

https://dpesummit.com/chasing-the-speed-of-gradle-builds/

Test Time Continuing to Grow

Mean time spent per presubmit run

100

50 —

25

0 T T T T T T T T
Jan Apr Jul Oct Jan Apr Jul Oct
2021 2022

== Mean Bottleneck Test Time

Key Insight on APK checksums

Test results don’t change if both application and test APKs are the same

Combined with modularization — higher hit rate

Unstable APK generation

e Dbaseline.profm (issuetracker.google.com/issues/231837768)

Unstable APK generation

e Dbaseline.profm (issuetracker.google.com/issues/231837768)

e shadow jar including incremental kotlin data (r.android.com/2089482)

Unstable APK generation

e Dbaseline.profm (issuetracker.google.com/issues/231837768)
e shadow jar including incremental kotlin data (r.android.com/2089482)
e AndroidManifest.xml android:compileSdkVersionCodename

(issuetracker.google.com/issues/277836549)

Unstable APK generation

e Dbaseline.profm (issuetracker.google.com/issues/231837768)

e shadow jar including incremental kotlin data (r.android.com/2089482)

e AndroidManifest.xml android:compileSdkVersionCodename
(issuetracker.google.com/issues/277836549)

e 8 + API 34 record types regression

Migration From Custom Lab to Firebase Test Lab

Caching

APK checksum result caching

Migration From Custom Lab to Firebase Test Lab

Caching
APK checksum result caching
Sharding

from n devices to run m APK sets — 1:1

Migration From Custom Lab to Firebase Test Lab

Caching

APK checksum result caching
Sharding

from n devices to run m APK sets — 1:1
Isolation

multiple APKs sets per device —dedicated device per APK set

Effects on 95th Percentile

Time spent per presubmit run (95th percentile)

200
150
100

50

Jan Feb Mar Apr May Jun Jul Aug Sep

= End-to-End time = Bottleneck Build Time = Bottleneck Test Time

I | I | I | 1 |

January 2023 February March April May June July August September

Effects on Mean Time

Mean time spent per presubmit run

80

60

40

20

0 T T T T T T T T T
Jan Feb Mar Apr May Jun Jul Aug Sep
2023
= Mean End-to-End time == Mean Bottleneck Build Time = Mean Bottleneck Test Time

— V——\

I 1 I I I I | 1

|
inuary 2023 February March April May June July August September

What's next?

e Replace FTL shard retries to per method retries

e Emulator stability work

Thanks!

