
Codebase Growth

and the

Developer Productivity Impact
Making the case for investment in

Developer Productivity Engineering

About Me

Brian Stewart

Staff Systems Development Engineer @ Jamf

Jamf

Helping organizations succeed with
Apple

engineering.jamf.com

The Story
Incremental improvements to the developer experience

Jamf Pro project stats

Jamf Pro server monorepo

1 million+ lines of code

150 engineers contributing code

28,977 CI builds

- 2,415 builds/month, or 80 builds/day

23 minute average CI build time across all branches

Java Gradle

Bamboo

TypeScript

JUnit

Server Backend Build

CI Server

UI Frontend

Unit + Integration Tests

Build Times by Year

2020

Maven → Gradle

35 30 23

2021 2022 2023

Build Cache Improvements Predictive Test Selection
Test Distribution

45

Build Cache

Remote Build Cache

Configuration Cache

Build Cache Optimization

Zoom in: 2022-2023 YoY

⬆11%

Lines of Code

⬆11% ⬆14% ⬇23%

Unit Tests Integration Tests Build Time

The build time is actually 35% better than just doing nothing
and letting it grow at the natural rate

How we did it
Predictive Test Selection + Build Cache Optimization

Simplicity — the art of maximizing the amount of work not done — is essential.

- The 10th Principle of the Agile Manifesto

Predictive Test Selection
Intelligently run only the most useful subset of tests for a particular change

Predictive Test Selection

Machine learning applied to run only relevant tests

POC during Summer 2022, rolled out to full test suite in October 2022

Main branch runs all tests post-merge to keep full test coverage

Implementation effort was minimal - only a few hours of looking at
simulated results to ensure accuracy

Predictive Test Selection

Our results after 6 months

PTS is saving us:
● 36% of unit test time
● 39% of integration test time

→ 111 days of build time saved per month*

* Wall clock build time, not serial execution time

Predictive Test Selection

Our results after 1 year

PTS is saving us:
● 93% of unit test time
● 64% of integration test time

→ 165 days of build time saved per month

What about uncaught test failures on the main branch?
● In 1 year and 2000+ merges, only 3 test failures slipped past PTS

* Wall clock build time, not serial execution time

Predictive Test Selection

Developer time and cost savings

Assuming developers actively wait on 20% of builds:

 20% x 165 days saved/month = 33 days saved/month

 33 days saved/month / 22 engineering days/month = 1.5 engineering months saved/month

Extrapolated, that is 1.5 engineering years (and cost) saved per year

Predictive Test Selection

CI agent cost savings

Running on Amazon EC2 agents (m5.xlarge) @ $0.192/hour:

 $0.192/hour * 165 days saved/month * 24 hours/day * 12 months/year = $9,124 saved/year

Predictive Test Selection

Build Cache Optimization
Make tasks cacheable and keep cache misses low

Build Cache Optimization

Keeping cache misses low

Fixed cache misses for a couple long-running test suites

Cache hit rate: 98%

Cache optimization maintenance this year: ~2 weeks

Build cache avoidance savings: 60%

Build Cache Optimization

What’s the ROI?
Or, is the DPE investment justified?

Developer Productivity Engineering

The dystopian world

Without PTS + Build Cache, CI builds average 65 minutes

 65 m / 60 m/hr / 8 hrs/workday * 20% waiting * 28,977 builds/year = 785 days lost/year

→ 3.0 engineering years lost, per year

Developer Productivity Engineering

Real-world savings @ Jamf

Incorporating PTS + Build Cache, CI builds average 23 minutes

 23 m / 60 m/hr / 8 hrs/workday * 20% waiting * 28,977 builds/year = 278 days lost/year

→ 1.1 engineering years lost, per year

The difference with DPE: 3.0 - 1.1 = 1.9 engineering years saved, per year

Developer Productivity Engineering

What’s the Return on Investment?

Total effort to maintain PTS + Build Cache going forward:
 ~10% FTE capacity, or 0.1 engineering years

What’s the ROI?
 0.1 engineering years to save 1.9 engineering years:

19x ROI

What’s next?
2023 and beyond

Current and future optimizations

Relentless improvement

● Test Distribution

○ Already rolled out for unit tests

○ Integration tests in progress

● Configuration Cache

● Local IDE & workflow revamp

● Onboarding all Gradle projects at Jamf into Gradle Enterprise

Developer Productivity Engineering

The developer experience impact

Without any build acceleration features, developers would be waiting for builds an average of 5.2
days per developer per year, over a week lost per developer! Not only is the waiting time lost, but

additional developer productivity is lost as developers lose their mental flow,
increasing context switching and frustration.

Developer Productivity Engineering

The developer experience impact

Happy developers are creative, innovative developers.

DPE is helping the Jamf make our developer experience awesome,
one step at a time.

fin
brian.stewart@jamf.com

engineering.jamf.com

mailto:name@company.com

