Embracing DORA Metrics at Airbnb

Christopher Sanson

Senior Product Manager, Airbnb

Measuring Developer Productivity

Measuring Developer Productivity

Measuring Developer Productivity

Measuring Developer Productivity

Measuring Developer Productivity

Measuring Developer Productivity

Measuring Developer Productivity

Measuring Developer Productivity

Measuring Developer Productivity

Everything pizza

How to measure developer productivity

@\ D)
U

PR frequency

How to measure developer productivity

=
- ®\&
=2

@] (@)
v Time to 10th PR
O

PR frequency

How to measure developer productivity

—
< ® | &
M = SEAN
& 3
Time to 10th PR * = ®

PR frequency LoC

How to measure developer productivity

—
= &

}\/ ! = \\A
@ (@ @ L@
Time to 10th PR ey
o =~ o

PR frequency LoC

2

How to measure developer productivity

)
.
A SN
& Bl
Time to 10th PR = g
O

PR frequency LoC

Saw a blog

How to measure developer productivity

Single metric Saw a blog

How to measure developer productivity

—
A
\%\
Time to 10th PR oL
LoC

Tell me what
to fix

S
€5

Single metric Saw a blog

How to measure developer productivity

PR frequency

AN

—
@

So what?
What changed?

1)

P

Tell me what
to fix

R
€5
KB

Single metric Saw a blog

DORA to the rescue

Industry standard metrics
Research backed

Get past the initial debate

Implementation

In theory, a metric like lead time is super easy. But in reality, there’s a
ton of nuance. Do we look at when code gets committed to a local
branch, a feature branch, or to the trunk? When is code in production
—is it when we roll it out to a beta user, to 5% of our users, or to
100% of our users?

On the surface, these metrics are simple and easy to understand.
But once you dig in, there can be a ton of nuance to them. My
recommendation is to agree to something, and be very clear and
transparent in what you're measuring.

Nathen Harvey, Google

Monorepo release pipeline

A developer makes changes to services After merge, snapshots are created Snapshots are deployed independently
A & B and submits a PR for each service change by service owners

Service A Snapshot A)

| Pod
G ﬁ b
itHu)
Service B Snapshot B m

Lead Time for Service A

Lead Time for Service B

Monorepo release pipeline

A developer makes changes to services After merge, snapshots are created Snapshots are deployed independently
A & B and submits a PR for each service change by service owners

Service A Snapshot A)

a»
a»

GitHub

Service B Snapshot B)

Lead Time for Service A

Lead Time for Service B

©

g

(&

GitHub

PR created

Calculating Lead Time

waw S

PR Merged Deploy started

PR Lead Time Lag Time to Deploy

Deploy Time

Deploy complete

Calculating Lead Time

& V. <
= GitHub GitHub
PR created PR Merged Deploy started Deploy complete
PR Lead Time Lag Time to Deploy Deploy Time

Time to 1st review
Time in review
Merge lag time

What did we learn

Lag Time to Deploy was a major bottleneck

R 4 >

PR created PR Merged Deploy started Deploy complete

PR Lead Time Lag Time to Deploy Deploy Time

-®
>85% of lead
time

DORA
Takeaways

Standardize on definitions

Use alongside other signals
Have a plan for driving change
Can set goals but be careful

Don’t boil the ocean

Measuring impact of specific projects
Where DORA

Not directly actionable
worked less well y

Focused on DevOps pipeline

What’s Next

BeyOnd SPACE framework & feedback loops
DO RA |dentifying and measuring key drivers

Desired Outcomes

Frequency
Lead times
Incidents

Developer satisfaction

Key Drivers

Wait times
Build times
Code review

Pass Rates
Flakiness
Reliability

Work Environment
Tech debt
Documentation
Focus time

Al assistants

Thanks!

