
DevProd for  
CI maintainers

DPE Summit 2023

Etienne Studer, SVP of Engineering, Develocity

Collect deep build data to
understand the state of the

developer toolchain on CI and
make informed decisions what to

improve.

Agenda

● Capturing build data on CI

● Processing the captured build data

● Surfacing insights from the processed build data

1

Capturing build data on CI

Collecting data about every CI build allows to
understand the state of the developer toolchain on CI,
including performance, reliability, and resource usage.

CI build data can be collected by configuring all
projects’ builds to capture and publish their build data
to the server.

This requires the buy-in of the project owners and
build modifications.

When there are many projects, data is required to
prioritize which projects to reach out to first.

Alternatively, the CI build data can be collected by
having the CI runner inject the configuration to
capture and publish the build data into the invoked
build.

This does not require touching the projects’ builds.

https://github.com/etiennestuder/teamcity-build-scan-plugin
https://github.com/jenkinsci/gradle-plugin
https://github.com/gradle/gradle-enterprise-gitlab-templates
https://github.com/gradle/gradle-build-action
https://github.com/gradle/gradle-enterprise-bamboo-plugin

CI plugins for Develocity

Jenkins Plugin 
https://github.com/jenkinsci/gradle-plugin

Gitlab templates  
https://github.com/gradle/gradle-enterprise-gitlab-templates

GitHub Gradle Build Action 
https://github.com/gradle/gradle-build-action

TeamCity Plugin 
https://github.com/etiennestuder/teamcity-build-scan-plugin

Bamboo Plugin
https://github.com/gradle/gradle-enterprise-bamboo-plugin

https://github.com/jenkinsci/gradle-plugin
https://github.com/gradle/gradle-enterprise-gitlab-templates
https://github.com/gradle/gradle-build-action
https://github.com/etiennestuder/teamcity-build-scan-plugin
https://github.com/gradle/gradle-enterprise-bamboo-plugin

Example: Config-injection on Jenkins

Config-injection for Gradle and Maven

Gradle:
./gradlew build --init-script develocity-init.gradle

Maven:
mvn package -Dmaven.ext.class.path=develocity-extension.jar

All configuration related to capturing and publishing
the build data to the server can be consolidated into a
versioned convention plugin / extension.

This unifies the configuration of the data capturing,
build caching, test acceleration, custom values, etc.

Example: Gradle plugin / Maven extension

https://github.com/gradle/gradle-enterprise-build-config-samples/tree/main/convention-gradle-enterprise-gradle-plugin
https://github.com/gradle/gradle-enterprise-build-config-samples/tree/main/convention-gradle-enterprise-maven-extension

2

Processing build data

Exporting build data into a big data store allows
asking specific toolchain questions at scale.

Build models exposed by Develocity are described via
OpenAPI specification. They currently cover build
attributes, build cache performance, and project structure.

Build models are consumption-oriented.

Build model versions are backward-compatible.

Build models can be manually retrieved by writing a
client that gets the data from the Develocity API.

This requires retries, resuming, paging, parallelizing,
etc. and either ad-hoc analysis or saving in another
store.

docs.gradle.com/enterprise/api-manual/ref/2023.3.html

https://docs.gradle.com/enterprise/api-manual/ref/2023.3.html

Manually retrieve build models via API client

curl -s -H “$AUTH” “https://
develocity.develocity.mycompany.com/api/builds
?fromInstant=1694097000000&maxBuilds=3
&query=tag:ci” | jq

Alternatively, build models can be automatically
exported by Develocity and made available to a big
data engine.

This allows to immediately ask specific toolchain
questions.

Build model export, query & visualization

Develocit
y

GrafanaAWS AthenaAWS S3

Develocity – build model export

Develocity can be configured to export the build models to S3.

Exported models are automatically updated on new versions.

Newly available models are automatically exported.

AWS S3 – build model intermediate storage

Build models conform to the same OpenAPI-based schema as the
Develocity API.

All build models of a build are in a single JSON stored in compressed
format.

Stored build models are partitioned by build start time, one prefix per hour.

Designed for consumption by any Apache Hive-based engine.

AWS Athena – build model query

Athena is a serverless big data query engine, with some caching to save query
results.

The schema of the table is defined by the JSON schema of the build models,
with each build model contained in a separate column.

SQL-like queries are run against tables and views and may include joins across
build models.

Grafana – build data visualization

Athena datasource is available for Grafana.

Charts are backed by queries into Athena tables and views.

IoC

Using Terraform to provision Athena resources.

Construct Grafana dashboard from JSON definitions.

Planned: Automatic creation and updates of Athena table definitions by Develocity

3

Surfacing insights from build data

Use the captured build data to identify usage and
failure patterns, flakiness, build acceleration potential,

resource waste, etc.

Overview

● How many projects, builds, build tools?

Contributors to build volume

● Projects with highest build count, highest total build duration, highest

median build time?

Failure impact

● Projects with highest build count of failed builds, total build duration,

and median build time?

● Projects with highest total build duration of builds failing due to non-

verification failures?

● Build agents with highest build count of failed builds, total build

duration, and median build time?

● …

Build acceleration improvements

● Projects that do not have build caching enabled with highest total execution and median

execution time of generate & compile & test?

● Projects that have build caching enabled with highest total execution and median execution

time of cacheable goals/tasks

● Projects that have build cache errors

● Projects that have long dependency download times

● Multi-module Maven or Gradle projects not built in parallel

● Multi-module Maven or Gradle projects built in parallel with only 1 worker

● Maven projects run with different Maven versions

● …

Prioritize actions for improvements
based on

quantitative impact analysis  
and surfacing of the top-10 offenders.

THANKS
etienne@gradle.com

gradle.com

mailto:etienne@gradle.com

