
Android CI At Scale - How Square 

Makes It Work

Paul Hundal, Inez Korczyński  
DPE Summit 2023



Square

Add
Logo



Our Team

Paul Hundal Inez Korczyński 

Senior Software Engineer Senior Software Engineer



2 41

5 6 7

General Stats
 

Build Pipeline Composition

UI Test Avoidance

Shard Avoidance Results Next Steps

Agenda

3

Git S3 strategy



1

General Stats



Overview & 
numbers



Some Stats 

● 200 Android developers

● 11 apps in Google Play Store

● 300 demo/development apps

● 5,400 Android modules

 



2

Composition of our Build 
Pipeline



Types Of Jobs

● checks

○ e.g. check-ktlint, check-unused-dependencies

● builds

○ e.g. pos-assemble-release, pos-assemble-android-test, login-screen-

assemble-debug, 

● unit tests

○ e.g. pos-unit-tests

● ui-tests

○ e.g. pos-ui-mobile, point-of-sale-ui-tablet

● publish

○ pos-sign-and-upload

 





Problems?



3

Git / S3 Strategy



● Git snapshot

○ Created daily

○ Shallow clone (depth=50)

● Git bundle

○ Created for each SHA

○ Differential (snapshot => SHA)



4

UI Test Avoidance



● 14,000 UI tests

● 500 CI UI tests jobs

pos-mobile-ui

3,100 tests & 120 emulators

login-screen-demo-mobile-ui

5 tests & 1 emulator





Smali classes/files ending up in different directories



Timestamp, versions, shas



Results - hit ratios

98%

Demo/Development applications

25%

Large applications



5

Shard Avoidance



Shard Avoidance Benefits

● Faster Builds
● Less potentially flakey shards to run
● Reduced worker queue
● Faster developer iterations



Shard Avoidance In Practice

● Compare Git SHA’s
● Analyze modified files
● Map to Gradle Modules
● Find minimum set of CI shards to 

run







Gradle Tooling API

We analyzed how Gradle interacts with IntelliJ 
using the Tooling API to extract a custom model 
representation of our dependency graph.

● Extract the build graph
● Create model representation for analysis
● Inject models into our analyzer
● Determine which shards to skip



Shard Avoidance Results

50%

Shards Skipped

360

Time Saved (hrs) 



Static Build Analyzer

We tried to bypass Gradle using Groovy’s AST 
Parsing

● Mimic the model representation of Gradle 
● Bypass the Tooling API completely
● Reduce the 3-5 minute runtime of the 

configuration phase to mere seconds!
● Lower level of correctness



Shard Avoidance Cache

We realized that though expensive, Gradle 
produce an accurate representation of our build 
graph. But does it need to be invoked every time?

● Global files modified only 8% of the time
● Reusable build graph
● S3 Key/Value Store 



Results

63% 12%

Avoidance Analysis Time 
Savings

Overall Build Time Reduction

90%

Avoidance Cache Hit Rate



Results



Recap

● Problem Space

○ 11 Apps

○ 200 Developers

○ 1,200 Shards

○ 14,000 UI Tests

○ 5,400 Android Modules

● Solutions

○ UI Test Avoidance

○ Shard Avoidance

○ Shard Caching



THANKS
paul.hundal@block.xyz

inez@block.xyz


