D P E Q@ San Francisco, CA
SUMMIT September 20-21

SN\ How Improving the

| Testing Experience
Goes Beyond Quality: A
Dev Productivity Point
Lo} AVATIY,

Roberto Perez Alcolea & Aubrey Chipman
lqper Productivity Team ,

Agenda

— Why improving the Testing
Experience?

— Day in life of a developer

— Netflix JVM Build Landscape

— Common problems in the software
testing experience

— Improving the testing experience
for developers

— Learnings along the way

Why focus on
Improving the
Testing
Experience?

Flow state

Dev Productivity witn No Trtepuphons
............. Flow State
?fo&uﬁw'l"j

https://about.sourcegraph.com/blog/developer-productivity-thoughts

Mental context switches = out of
Flow state

th\ mquwrr Conttent Switthes

— e— =
— — -— — ——

https://about.sourcegraph.com/blog/developer-productivity-thoughts

Developer Tnner Loof; Outer Loop
? o

https://about.sourcegraph.com/blog/developer-productivity-thoughts

Developer Tnner Loof

Search
Cﬁmm'LJC

Read

Build Write

I Image from https://about.sourcegraph.co og/developer-productivity-thoughts

https://about.sourcegraph.com/blog/developer-productivity-thoughts

Testing is crucial in the inner
loop and suboptimal
experience leads to context
switching and losing flow state

Day In the life of a
developer

(Low productive environment...)

test.library;

com.google.common.collec @ = Newtab Build #280
ava.util.List; 1o Ficsd
a5 builds= e
Nessage Pall Requect
Library { A
= Lists.newArraylist(v BUIDLOG | § ARTIRACT GRNERATED
hasFruit(String fruit) { 15220883 (22 sxmesssstumt. exvotosacs b e e oo ke e e et 0 O
.contains(fruit) Build output
R 61 passed = wntts ngy 1efieg o 0a)a1 a4) 10) TRt 102 1%
2 e 45 MEA: La rore az (3321ez WAES BULL T4UMIE PR3 6 ANIgEE-atix 2un LLAUALLIGE O MARTAE
Gradle nicr test-library build Scp 21, 2¢ Ntk oy chivhr
TEST keeldemo-prestaging la/l
Summary 14 lines v Download raw
o US-WEST-2
lib:zompiledav
B Feikure dibier =S0lRGE ~ V075: Build: #44 (sh2] 1

() Deprecations
= Timeline

' Performance
EE Tests

.ﬂz Prejects

cEs NJ-SUURCE

&% Dependencies

’:E Build dependencies

= in 795m=
[*> Plugins 7
A= Customvalues

Wednesday Morning
GOOD

WVFPIMYy

SUNSHINE

The developer:

NOT SURE IF FLAKY
WO TEST

— I M DOOMED!

The developer doesn’t achieve much, is frustrated and unmotivated

Netflix JVM
Build
Landscape

Builds executing tests

Per 28 days Build count

838K

50K

Aug 11 Aug 15 Aug 19 Aug 23 Aug 27 Aug 31 Sep 4

TESTS E\IEHYWHEHE

14 Million test cases executed in 28 days

Let’s focus
on testing...

at the
project level

Common
problems iIn
the software
testing
experience

Testing becomes difficult

— Hard to write tests with provided
tools

— Lack of actionable feedback from
outputs

— Test suites evolution Something went wrong

— Lack of documentation or examples

Dismiss

There are tests, but they
are flaky

Flaky tests fail to produce the same outcome
with each individual test run.

Potential reasons:

— Asynchronous waits, concurrency

— Test Order Dependency

— Poorly modeled tests M

Results of having flaky

tests

This can and will frustrate developers.
In order to ship a change, folks might:

— Delete the test

— Ignore the test and might never revisit it

... Versus

— ldentify the flaky test and fix it in the
moment

In any case, they might start losing
confidence in the test suite

I Images from https:/dribbble.com/shots/2953817-delete-animation and https://blog.crisp.se
you-feeling

I
Angry ~ Happy

Sod ~ Fine

https://dribbble.com/shots/2953817-delete-animation
https://blog.crisp.se/2019/12/05/yassalsundman/how-are-you-feeling
https://blog.crisp.se/2019/12/05/yassalsundman/how-are-you-feeling

There are tests, but they
are slow

Variety in
— Test setup time v
‘ ‘ Q@
— Shared resources '_‘

— Parallelization

There are tests, but they
are inconsistent

Variety in

— Local Mac machines

— CI Linux machines

— Network and security access

Are these Issues
causing problems
In my
organization?

Most likely,
yes!

H5Q68

Unwanted situations

Developers will be frustrated and it is possible to fall into
the following traps:

— Avoid writing tests

— Ignore or remove tests in order to verify their
changes

— Avoid running tests locally and wait for Cl job
executions to provide feedback for every single
small change

‘Dcvg\o‘)e(Taner Loof

Search
C,Dmm'LJC

Read
Test

Buld Write

I Images from https://about.sourcegraph.com/blog/developer-productivity-thoughts

Dev Productiviby witn No Trtentughons
............. Flow State
Vfodutﬁvd'ﬁ

https://about.sourcegraph.com/blog/developer-productivity-thoughts

And...

“It Is staggering how
tolerant engineers are of
toil and frustration and
friction.”

At Netflix, we are
not iImmune to that

And we have
Invested on It...

Improving the
testing
experience for
developers

Faster test
startup

+ Let’s look at

a real world
~
example 4-

Project setup

Great tools!!
but...

Running a single test class
was slow

com.netflix.spotlightapi.db.SmokeTest PASSED

:spotlight-api-db-server:smokeTest

28 results in last 7 days, 28 passed View test history

Execution 1 of 1 PASSED Total / own / serial timg 2m 5.062s / 2m 3.334s / 2m 5.062s Started May 18 2023 at 13:49:13 PDT

No test class setup or cleanup failures occurred during this test class execution

OQutput

Test output is not captured for successful test executions, except for the first successful retry after a prior failure.

Test executions
The test method Is not the problem

Test Outcome Total time

contextLoads PASSED 1.728s

The actual bottlenecks

: Successfully completed migration of schema "public" to version "34 - addBdpWorkflowEnumType" [non-transactional]
: Schema History table "public"."flyway_schema_history" successfully updated to reflect changes

: Updating lock in Flyway schema history table
: Successfully applied 34 migrations to schema "public", now at version v3® (execution time 00:49.006s)

49 seconds applying flyway migrations!

: starting up nf-testcontainers for CockroachDB
: Waiting for database connection to become available at jdbc:postgresql://localhost:53791/defaultdb using query

: Container is started (JDBC URL: jdbc:postgresql://localhost:53791/defaultdb
: Container docker-hub.netflix.net/cockroachdb/cockroach:v22.1.16 started inPT13.001699S

13 seconds waiting for crdb to be ready in Docker on M1!

The tools were not
the problem, but
how we used them!

Why so slow?

— Many migration files with
multiple SQL statements

— Docker in ARM based Mac /

— Not reusing containers

Faster tests -> faster builds

Build Time dropped

31m 40s
More than 50%

15m 50s

| Wednesday, May 24 2023 l

Os
May 14 May 15 May 16 May 17 May 18 May 19 May 22 May 23

May 24

:spotlight-api-db-server:smokeTest

28 results in last 7 days, 28 passed View test history /

Execution 1 of 1 PASSED Total / own / serial time: 48.600s / 48.000s / 48.600s Started May 19 2023 at 15:22:12 PDT

No test class setup or cleanup failures occurred during this test class execution
Output
Test output is not captured for successful test executions, except for the first successful retry after a prior failure.

Test executions The test method is even faster

Test Outcome Total time

contextloads PASSED 0.600s

May 26

MEAN
6m 6s

MEDIAN
6m1s

25TH-75TH %ILE
5m 19s — 6m 49s

5TH-95TH %ILE
2m 51s — 8m 35s

What did we change?

Database migrations
baselines

— Testcontainers singleton
pattern

— Testcontainers Cloud

https://java.testcontainers.org/test_framework_integration/manual_lifecycle_control/#singleton-containers
https://java.testcontainers.org/test_framework_integration/manual_lifecycle_control/#singleton-containers
https://testcontainers.com/cloud/

Other suggestions

— Test slicing (reduced application context and

data)
— Context initialization LOW
HANGING
FRUIT!

— Invest on application startup time
Better modularization
Trim dependencies r

% You might find
opportunities to
standardize tools
across teams! 7

¢

Flaky Test
Detection &
remediation

Flaky Test Detection

When a test fails, how do we determine if it’s flaky D

or not? " "

Why is this important?
A]

é molce

—+ Tesvs <

v g ™ ' . 2
ﬂ-—(’ / Own \‘ oA m 6 o
4 Plecka. =
—E—ji (g =l
Y \ s i Yion (el Lg T

Acccp\wu_ Te o8 \

Seconds / . » "A' W@i‘\'s- \

https://medium.com/contino-engineering/knowthe-testing-pyramid-42a4b3573988

From

https://medium.com/contino-engineering/knowthe-testing-pyramid-42a4b3573988

Flaky Test Visualization

bl L]
i ®
O

We use Gradle’s Test Retry Gradle plugin with
Gradle Enterprise to catch and visualize flakiness.

https://github.com/gradle/test-retry-gradle-plugin

Flaky Test Detection

Builds with flaky tests ®

5 . éO K builds (1% of 469K builds that executed tests)

400

200

Aug 8 Aug 11 Aug 14 Aug 17 Aug 20 Aug 23 Aug 26 Aug 29 Sep 1 Sep 4

In a month, 5.6k Builds (1%) have flaky tests, not good!

Flaky Test Detection by class

Builds that executed test class ®

341 builds

24 FAILED

3
] FLAKY
]
296
| |
PASSED
0 42

SKIPPED
0

NOT SELECTED
0
5

Aug 7 Aug 11 Aug 15 Aug 19 Aug 23 Aug 27 Aug 31 Sep 4

| We know which tests are constantly reported as flaky M

Flaky Test Detection by class

Mean execution time fortest (&
class

3 min 32 sec

8m 20s MEAN
3m 32s
MEDIAN
3m 32s
25TH-75TH %ILE

4m 10s 3m 20s — 3m 42s
5TH-95TH %ILE
1m 48s — 5m 45s

Os
Aug 11 Aug 18 Aug 25 Sep 4
I And with how long they usually take to run, this test il

used over 17 hours for the 296 retries

Detection != Solving
the problem «

What can we do about it?

— Surface this information to project

owners on a friendly way
I| . ——I -

— Culture change

— Quarantine the tests

The goal...

C lrd O pays

WITHOUT FLAKY ‘

Hopefully one day!

Predictive
Test
Selection

Predictive Test Selection

Increases developer productivity
by automatically and intelligently
selecting and executing the
subset of tests that are most
relevant to a code change,
providing faster feedback.

Popularized by Meta. Read the
paper!

(

Test
Build -

Code h
Snapshot

oo

and
Test Set }

0oo
goo
J

Returned

<00 <
O
L)

Tests

Gradle
Enterprise
+
Predictive
Test
Selection
Model

&

Updated
Model

&

e N

ML Model
Selects
Tests

O

- S/

J

https://arxiv.org/abs/1810.05286

How does PTS work?

Predictive model by observing code changes and
test outcomes from your Build Scan data

Predictive Test Selection will not attempt to make
predictions for test tasks or goals for which fewer

than 14 days of code =

Tests will always be chosen if they are recently new,
recently changed, recently failed, or recently flaky.

NOTE: We are trading testing comprehensiveness for
faster feedback, making it worthwhile for many test
executions where reducing feedback time is critical,
such as local and pre-merge/pull-request builds

o/0

o

00

00 \
o0

Monthly PTS Simulations for local and CI builds

Savings potential Avoidable tests

33 d 8 hr (19%) 187K @27%)
Local

21d %h

AVOIDABLE
33d 8h

UNAVOIDABLE
- - - - 95d 9h
Os —

= —_ — —— e

INSUFF. DATA
42d 12h
21d %h
Nov 14 Nov 16 Nov 18 Nov 20 Nov 22 Nov 24 Nov 26 Nov 28 Nov 30 Dec 2 Dec 4 Dec 6 Dec 8 Dec 10 Dec 12
Savings potential Avoidable tests
73 d 5 hr @s% 1.11M @2%)
CI 7d 21h AVOIDABLE
73d 5h
UNAVOIDABLE
94d 18h
Os
INSUFF. DATA
22d 5h
7d 21h
I Nov 14 Nov 16 Nov 18 Nov 20 Nov 22 Nov 24 Nov 26 Nov 28 Nov 30 Dec 2 Dec 4 Dec 6 Dec 8 Dec 10 Dec 12 N

& 30,684 potential
hour savings
In a year <-

We rolled 1t out
to all compatible
prOJects

How did we roll out PTS?

Incremental
feature rollout

o>

)\
Test group U
SRt M)
10%users [| ~O > @)
50% users |__|| | /\%Clﬁ‘

All users Lf\' \

I Image from https://www.drawio.com/feature-flag-devops-whitepaper

https://www.drawio.com/feature-flag-devops-whitepaper

PTS results the first month

Test tasks which enabled Predictive Test Selection

226K o]

219K ACTIVE
226K
INACTIVE
24.2K
0
UNAVAILABLE
8.18K
21.9K
Mar 27 Mar 30 Apr2 Aprd Apré6 Apr8 Apr 11 Apr 14 Apr 17 Apr 20 Apr 23
107/ d 15 h I'1(88%Jof 122 d 5 hr total savings potential)
Hdizh NOT SELECTED
107d 15h
SELECTED
180d 18h
Os _— 4 § 1 §
17d 12h

Mar 27 Mar 30 Apr 2 Apr 4 Apr 6 Apr 8 Apr 11 Apr 14 Apr 17 Apr 20 Apr 23

But not
everything goes
as expected,
unfortunately

Learnings

— Developers might not like trading testing
comprehensiveness for speed

— Missing inputs/outputs in test configurations

— Impact on code coverage tooling

Remote Test
Execution

Remote Test Execution

Take existing test suites and distribute them across
remote agents to execute them faster

The tests and their supporting files are transferred
to each agent and executed, with their logging and
results streamed back to the build in real time.

Why Remote Test Execution?

Build time

Test execution

I Image from https://about.sourcegraph.com/blog/developer-productivity-thoughts N
Build time chart from Netflix build data

https://about.sourcegraph.com/blog/developer-productivity-thoughts

Why Remote Test Execution?

Build time : .
— Consistent experience between local and CI

— Better compute resource usage

— Faster feedback
—Dcvg\o()e(T nner W

— Run more tests locally

Test execution

.........

I Image from https://about.sourcegraph.com/blog/developer-productivity-thoughts N
Build time chart from Netflix build data

https://about.sourcegraph.com/blog/developer-productivity-thoughts

Life before remote test execution

@Gradle Enterprise X netflix-gradle-lint integrationTest ! 8= Build Scans
E Summary E] 33 tasks executed in 2 projects, 1 failed task in 1h 2m 15.568s, with 2 avoided tasks saving 12.554s

Console log
Failure

(D) Deprecations sintegrationTest

[)

.

W Performance

Tests
Projects :processintegTestResources
:integTestClasses
Dependencies :nebulaVersionWriterTask
:pluginUnderTestMetadata

sintegrationTest FAILED

Build dependencies
Plugins

Custom values

00 i L= 82 8% & B

Switches

=
1%l
d

1)
Rlor

Infrastructure

D

Y See before and after

0) Compare Build Scan

Details Predecessors Successors

Path t nT
Type

This task is on the critical path.

Started after
Duration

Execution

ProcessResources
DefaultTask
NebulaDistributionUrlWriter
e.plugin.devel.t PluginUnderTestMetadata

Test

Life after remote test execution

@Gradle Enterprise

E Summary
Console log

@ Deprecations

W Performance

M Tests

gi-e, Projects

32 Dependencies

3

Build dependencies

X

Plugins

o= Custom values
8 Switches

% Infrastructure

¥D) See before and after

0) Compare Build Scan

v/ netflix-gradle-lint integrationTest |

E] 33 tasks executed in 2 projects in 4m 59.676s, with 7 avoided tasks saving 16.369s

tintegrationTest

5= Build Scans

&

(2]

®

sintegTestClasses
:nebulaVersionWriterTask
:pluginUnderTestMetadata
sintegrationTest

Details Predecessors Successors

Path
Type tas Test

This task is on the critical path.

Started after
Duration

r: Execution

DefaultTask
ula.version.NebulaDistributionUrlWriter
PluginUnderTestMetadata

Be aware of potential
limitations

— Network or security access
— Different environment debugging

— Network traffic and slow connections

Current use as a Beta offering

6.4% Remote execution (builds)
Md“

16% Remote execution (repositories)

| We are working to close our gaps

Learnings
along the way

Sure, there are &&!

Technological
solutions

We improved other experiences, too

- Enabled CI jobs parallel executions

- Increase on testing against real
datastores and AWS cloud resources

- Reduction on Cl agents failures due to
misconfigured Test Suites

- Reduce Cl compute resource usage

Social solutions

Abstracting tooling where
appropriate
— All the solutions discussed can be applied on a small ’
f project-by-project to a | fall
;(r:c())jpe)ce:tcs). agrgjnecce y-project to a large scope of a

— Use good judgement to determine if the solution
should be targeted to a select set of repositories

versus applied for all

Make it simple

— Be clear on what is changing, when and what to
expect.

— Over-communicate the ways folks can find useful
information.

— Prevent migration fatigue. Enable low-effort opt-in or
opt-out.

— Judiciously decide when to require user changes.

Understandability, documentation,
and tracking

— Provide actionable error messages that point to . A
further documentation where needed

— Provide actionable Pull Requests with informative
messages that are tracked in a campaign

— Spread awareness of the new features that save
them time and energy! Newsletters and townhall
feature reviews are great for this

Beta test this features with your team
and/or close partners

— Find customers who would benefit the most from this
to work with and help lead this effort

— Sharing with close partners helps uncover scenarios
that you probably didn’t think of

— Communicate expected outcomes and risks

— Measure before and after a feature has been
introduced

Request feedback, feedback is key

LN 77,

\CR-

Last thoughts...

Scale doesn’t matter
— Treat the testing process well!
— Invest on testing experience
— Enable fast testing cycles

— Treat test suites like production
code

HE How?
A

Developer Taner Loof

Search
Commix

Read

(¢}
| g°°:/ - Build W erite
(o]

—

I Image from https://about.sourcegr c

https://about.sourcegraph.com/blog/developer-productivity-thoughts

Questions?

Roberto Perez Alcolea
rperezalcolea@netflix.com

Aubrey Chipman
achipman@netflix.com

mailto:rperezalcolea@netflix.com
mailto:achipman@netflix.com

Thank
you!

Roberto Perez Alcolea
rperezalcolea@netflix.com

Aubrey Chipman
achipman@netflix.com

mailto:rperezalcolea@netflix.com
mailto:achipman@netflix.com

