

— Why improving the Testing
Experience?

— Day in life of a developer

— Netflix JVM Build Landscape

— Common problems in the software

testing experience

— Improving the testing experience
for developers

— Learnings along the way

— Q&A

Agenda

Why focus on
improving the
Testing
Experience?

Flow state

Image from https://about.sourcegraph.com/blog/developer-productivity-thoughts

https://about.sourcegraph.com/blog/developer-productivity-thoughts

Mental context switches = out of
Flow state

Image from https://about.sourcegraph.com/blog/developer-productivity-thoughts

https://about.sourcegraph.com/blog/developer-productivity-thoughts

Image from https://about.sourcegraph.com/blog/developer-productivity-thoughts

https://about.sourcegraph.com/blog/developer-productivity-thoughts

Image from https://about.sourcegraph.com/blog/developer-productivity-thoughts

https://about.sourcegraph.com/blog/developer-productivity-thoughts

⚠ ⚠ ⚠ ⚠ ⚠ ⚠ ⚠ ⚠ ⚠ ⚠ ⚠

Testing is crucial in the inner
loop and suboptimal
experience leads to context
switching and losing flow state

⚠ ⚠ ⚠ ⚠ ⚠ ⚠ ⚠ ⚠ ⚠ ⚠ ⚠

Day in the life of a
developer
(Low productive environment…)

Tuesday Afternoon

Wednesday Morning

The developer:

The developer doesn’t achieve much, is frustrated and unmotivated

Netflix JVM
Build
Landscape

Builds executing tests

14 Million test cases executed in 28 days

Let’s focus
on testing…

at the
project level

Common
problems in
the software
testing
experience

Testing becomes difficult
— Hard to write tests with provided

tools

— Lack of actionable feedback from
outputs

— Test suites evolution

— Lack of documentation or examples

There are tests, but they
are flaky

— Asynchronous waits, concurrency

— Test Order Dependency

— Poorly modeled tests

Flaky tests fail to produce the same outcome
with each individual test run.

Potential reasons:

Results of having flaky
tests

— Delete the test

— Ignore the test and might never revisit it

… versus

— Identify the flaky test and fix it in the

moment

This can and will frustrate developers.  
In order to ship a change, folks might:

In any case, they might start losing
confidence in the test suite

Images from https://dribbble.com/shots/2953817-delete-animation and https://blog.crisp.se/2019/12/05/yassalsundman/how-are-

you-feeling

https://dribbble.com/shots/2953817-delete-animation
https://blog.crisp.se/2019/12/05/yassalsundman/how-are-you-feeling
https://blog.crisp.se/2019/12/05/yassalsundman/how-are-you-feeling

There are tests, but they
are slow
Variety in

— Test setup time

— Shared resources

— Parallelization

There are tests, but they
are inconsistent
Variety in

— Local Mac machines

— CI Linux machines

— Network and security access

Are these issues
causing problems
in my
organization?

Most likely,
yes!

 😱 😱 😱

Unwanted situations

— Avoid writing tests

— Ignore or remove tests in order to verify their
changes

— Avoid running tests locally and wait for CI job
executions to provide feedback for every single
small change

Developers will be frustrated and it is possible to fall into
the following traps:

Images from https://about.sourcegraph.com/blog/developer-productivity-thoughts

https://about.sourcegraph.com/blog/developer-productivity-thoughts

And…

“It is staggering how
tolerant engineers are of
toil and frustration and
friction.”

At Netflix, we are
not immune to that

And we have
invested on it…

Improving the
testing
experience for
developers

Faster test
startup

🔎 Let’s look at

a real world
example 🔎

Project setup

Great tools!!
but…

Running a single test class
was slow

The actual bottlenecks

49 seconds applying flyway migrations!

13 seconds waiting for crdb to be ready in Docker on M1!

The tools were not
the problem, but

how we used them!

Why so slow?
— Many migration files with

multiple SQL statements

— Docker in ARM based Mac

— Not reusing containers

Faster tests -> faster builds

What did we change?
— Database migrations

baselines

— Testcontainers singleton
pattern

— Testcontainers Cloud

https://java.testcontainers.org/test_framework_integration/manual_lifecycle_control/#singleton-containers
https://java.testcontainers.org/test_framework_integration/manual_lifecycle_control/#singleton-containers
https://testcontainers.com/cloud/

Other suggestions
— Test slicing (reduced application context and

data)

— Context initialization

— Invest on application startup time

• Better modularization

• Trim dependencies

You might find
opportunities to

standardize tools
across teams!

Flaky Test
Detection &
remediation

Flaky Test Detection
When a test fails, how do we determine if it’s flaky
or not?

Why is this important?

From https://medium.com/contino-engineering/knowthe-testing-pyramid-42a4b3573988

https://medium.com/contino-engineering/knowthe-testing-pyramid-42a4b3573988

Flaky Test Visualization

We use Gradle’s Test Retry Gradle plugin with
Gradle Enterprise to catch and visualize flakiness.

https://github.com/gradle/test-retry-gradle-plugin

Flaky Test Detection

In a month, 5.6k Builds (1%) have flaky tests, not good!

Flaky Test Detection by class

We know which tests are constantly reported as flaky

And with how long they usually take to run, this test
used over 17 hours for the 296 retries

Flaky Test Detection by class

Detection != Solving
the problem 😔

What can we do about it?
— Surface this information to project

owners on a friendly way

— Culture change

— Quarantine the tests

The goal…

Hopefully one day!

Predictive
Test
Selection

Predictive Test Selection
Increases developer productivity
by automatically and intelligently
selecting and executing the
subset of tests that are most
relevant to a code change,
providing faster feedback.

Popularized by Meta. Read the
paper!

https://arxiv.org/abs/1810.05286

How does PTS work?
— Predictive model by observing code changes and

test outcomes from your Build Scan data

— Predictive Test Selection will not attempt to make
predictions for test tasks or goals for which fewer
than 14 days of code

— Tests will always be chosen if they are recently new,
recently changed, recently failed, or recently flaky.

NOTE: We are trading testing comprehensiveness for
faster feedback, making it worthwhile for many test
executions where reducing feedback time is critical,
such as local and pre-merge/pull-request builds

Monthly PTS Simulations for local and CI builds

Local

CI

💸 30,684 potential

hour savings

in a year 💸

We rolled it out
to all compatible

projects

🚢🚢🚢🚢

How did we roll out PTS?

Image from https://www.drawio.com/feature-flag-devops-whitepaper

https://www.drawio.com/feature-flag-devops-whitepaper

PTS results the first month

But not
everything goes

as expected,
unfortunately

Learnings
— Developers might not like trading testing

comprehensiveness for speed

— Missing inputs/outputs in test configurations

— Impact on code coverage tooling

Remote Test
Execution

Remote Test Execution
Take existing test suites and distribute them across
remote agents to execute them faster

The tests and their supporting files are transferred
to each agent and executed, with their logging and
results streamed back to the build in real time.

Why Remote Test Execution?

Image from https://about.sourcegraph.com/blog/developer-productivity-thoughts

Build time chart from Netflix build data

https://about.sourcegraph.com/blog/developer-productivity-thoughts

Why Remote Test Execution?
— Consistent experience between local and CI

— Better compute resource usage

— Faster feedback

— Run more tests locally

Image from https://about.sourcegraph.com/blog/developer-productivity-thoughts

Build time chart from Netflix build data

https://about.sourcegraph.com/blog/developer-productivity-thoughts

Life before remote test execution

Life after remote test execution

Be aware of potential
limitations
— Network or security access

— Different environment debugging

— Network traffic and slow connections

Current use as a Beta offering

We are working to close our gaps

Learnings
along the way

Sure, there are 😃😃!

Technological
solutions

We improved other experiences, too

- Enabled CI jobs parallel executions

- Increase on testing against real
datastores and AWS cloud resources

- Reduction on CI agents failures due to
misconfigured Test Suites

- Reduce CI compute resource usage

Social solutions

Abstracting tooling where
appropriate

— All the solutions discussed can be applied on a small
scope of project-by-project to a large scope of all
projects at once

— Use good judgement to determine if the solution
should be targeted to a select set of repositories
versus applied for all

Make it simple

— Be clear on what is changing, when and what to
expect.

— Over-communicate the ways folks can find useful
information.

— Prevent migration fatigue. Enable low-effort opt-in or
opt-out.

— Judiciously decide when to require user changes.

Understandability, documentation,
and tracking

— Provide actionable error messages that point to
further documentation where needed

— Provide actionable Pull Requests with informative
messages that are tracked in a campaign

— Spread awareness of the new features that save
them time and energy! Newsletters and townhall
feature reviews are great for this

Beta test this features with your team
and/or close partners

— Find customers who would benefit the most from this
to work with and help lead this effort

— Sharing with close partners helps uncover scenarios
that you probably didn’t think of

— Communicate expected outcomes and risks

— Measure before and after a feature has been
introduced

Request feedback, feedback is key

Last thoughts…
— Scale doesn’t matter

— Treat the testing process well!

— Invest on testing experience

— Enable fast testing cycles

— Treat test suites like production
code

Image from https://about.sourcegraph.com/blog/developer-productivity-thoughts

How?

https://about.sourcegraph.com/blog/developer-productivity-thoughts

Questions?

Roberto Perez Alcolea

rperezalcolea@netflix.com

Aubrey Chipman

achipman@netflix.com

mailto:rperezalcolea@netflix.com
mailto:achipman@netflix.com

Thank  
you!

Roberto Perez Alcolea

rperezalcolea@netflix.com

Aubrey Chipman

achipman@netflix.com

mailto:rperezalcolea@netflix.com
mailto:achipman@netflix.com

