

DEVELOPER PRODUCTIVITY
ENGINEERING SUMMIT 2023

Sao Francisco | September 20-21
https://dpesummit.com/

Moving Fast While Delivering
High Quality Code

Rui Abreu

Staff Software Engineer
X @rmaran hao

b ON) Meta

One
(out of many)

trigger(s)

00 Meta Shop v

C @ about.fb.com

Our technologies v About us v Build with us v

< Backto Newsroom

Meta

Update on Meta’s Year of
Efficiency

March 14, 2023

Mark Zuckerberg just shared the following with Meta employees:

Meta is building the future of human connection, and today | want to
share some updates on our Year of Efficiency that will help us do that.
The goals of this work are: (1) to make us a better technology company
and (2) to improve our financial performance in a difficult environment so
we can execute our long term vision.

Our efficiency work has several parallel workstreams to improve
organizational efficiency, dramatically increase developer productivity
and tooling, optimize distributed work, garbage collect unnecessary
processes, and more. |’'ve tried to be open about all the work that’s
underway, and while | know many of you are energized by this, | also
recognize that the idea of upcoming org changes creates uncertainty and
stress. My hope is to make these org changes as soon as possible in the
year so we can get past this period of uncertainty and focus on the
critical work ahead.

X @rmaranhao

MOVING FAST? HIGH QUALITY? PRODUCTIVITY?

- ," s
e

X @rmaranhao

1. Measuring Productivity

2. Drivers (developer POV)
a. Authoring Velocity
b. Reliability (incl. Quality)
c. Knowledge (incl. Readability)

3. What’s Next?

4. Q&A

X @rmaranhao

&2

HOW DO WE
MEASURE
PRODUCTIVITY?

Deployment frequency

Time to close ticket

X @rmaran hao

Defil C Defir
public async public async
function callTheFunction(string $my_string): string function wrongFunction(string $my_string): string

public async function callTheFunction(string $my_string): public async function wrongFunction(string $my_string):
string { string {
<<__Memoize>> return "Yay!"; <<__Memoize>> return "Oh No!";

public async function } public async function }
return await $this—>t rheFun | on(self::CONSTANT_VALUE); return await $this->callTl In | on(self::CONSTANT_VALUE);

¥ ¥

<<__Memoize>> <<__Memoize>>

public async function callTheFunction(string $my_string): string { public async function callTheFunction(string $my_string): string {
return "Yay!"; return "Yay!";

}

X @rmaranhao

PRODUCTIVITY
FRAMEWORKS

N

Deployment Frequency

DevOps Research and Assessment

O R

Lead Time for Mean Time to
Changes Recovery (MTTR)

%

Change Failure Rate

X @rmaranhao

PRODUCTIVITY
FRAMEWORKS

Q?OO N
AR LA

Satisfaction and

Well-Being Performance

{‘E’

Activity

Py

Communication
and Collaboration

<

Efficiency and Flow

X@rmaran hao

PRODUCTIVITY FRAMEWORKS

Software Design: Tidy First?

— Mcansey Technology, Media & Telecommunications
— &Company How We Help Clients ~ Our Insights ~ Our People Contact Us INCENTIVES
| Measuring developer productivity? A response
~ | to McKinsey
Part 1 of 2
@‘ KENT BECK AND GERGELY OROSZ
QO m D 16 3 10 Share

The consultancy giant has devised a methodology it claims measures software developer

Yes, you can measure software developer
productivity measuring activity comes with costs & risks they do not address. Here’s how we think about

productivity. They only measure activity, not productivity from a business perspective. And

measurement. Part 1. (Gergely’s version of this post is here.)
August 17,2023 | Article

At Facebook we [Kent here| instituted the sorts of surveys McKinsey recommends.

That was good for about a year. The surveys provided valuable feedback about the

current state of developer sentiment.
< @ ¥ [

Share Print Download Save

Then folks decided that they wanted to make the survey results more legible so they

. , , L Id track trend time. Th ted 11 f th .A 4.5
Measuring, tracking, and benchmarking developer productivity has cOWE track trends over time. HHey compHted an overall Scote Homm the Sutvey

, became a 4. What happened? Very reasonable thing to do. That was good for
long been considered a black box. It doesn’t have to be that way. PP Y & &

another year

Then those scores started cropping up in performance reviews, just as a "and they

are doing such a good job that their score is 4.5". That was good for another year.

Then those scores became goals. “Move from 4.2 to 4.5 during this performance

X @rmaranhao

Our Approach

4
Reliability e

X @rmaranhao

1. Measuring Productivity

Drivers

2. Drivers (developer POV)
a. Authoring Velocity
b. Reliability (incl. Quality)
c. Knowledge (incl. Readability)

3. What’s Next?

4. Q&A

X @rmaranhao

SWE’s CHORES

+ Split mega-classes into component classes
 Fix architectural design flaws

- Remove unused variables

- Migrate to the latest frameworks

- Update your dependencies

» Upgrade tooling

Write scripts to automate common work
* Improve documentation

* Fix bugs

* Fix papercuts

Credits to DALL-E.

X @rmaranhao

HOW DO WE
MEASURE
EASE OF
AUTHORING
ODE?

X @rmaranhao

AUTHORING CODE’s WORKFLOW @ Meta

Assigned
Reviewers

Pull Request
Summary

Comments and Activity

—
. I'd also suggest, limiting to “relevant”
- people only (similar to tasks), i.e. only
show reviewers and subscribers.

Yesterday at 5:07 PM - Like - Reply

neces
Yeah, I'm fine with sorting those folks to
the front, but | definitely want to show
everyone who has looked at it. That's the
funnest part about the new feature. You'd

— be quite surprised who looks at your diffs

Yesterday at 5:12 PM - Like -
Reply - Edit

X @rmaranhao

1. Measuring Productivity

Velocity

2. Drivers (developer POV)
a. Authoring Velocity
b. Reliability (incl. Quality)
c. Knowledge (incl. Readability)

3. What’s Next?

4. Q&A

X @rmaranhao

AUTHORING VELOCITY (AV)

How many working hours does it take to write and land a diff?

Dev starts working on
code for a diff Diff published Diff accepted Diff lands
{
!
| | | |
Author takes Author offline
lunch break for the weekend
- i . | | L

\ : ‘. |

Authoring Velocity

X @rmaranhao

IMPACT OF TOOLING ON AUTHOR VELOCITY

POSTED ON APRIL 6,2023 TO DEVINFRA, OPEN SOURCE

Build faster with Buck2: Our open source
build system

Meta Open Source

By Chris Hopman, Neil Mitchell f ‘y‘ ‘ Y ‘

e Buck2, our new open source, large-scale build system, is now available on GitHub. SCAN IVI E
e Buck?2 is an extensible and performant build system written in Rust and designed to

make your build experience faster and more efficient.
e |[n our internal tests at Metaq, we observed that Buck2 completed builds 2x as fast as

Bucka.
X @rmaranhao

AUTHORING VELOCITY & WASABI

Enabling
Faster Python Authoring
With Wasabi
= Control = Test
100.00%
SCAN ME
0.00%

Before After

X @rmaranhao

AUTHORING VELOCITY & CODE COMPLEXITY

_ 42% reduction in Authoring Velocity
Code Complexity

Author Velocity

—

March 2021 May 2021 July 2021 September 2021 November 2021 \

= Actual == Projected

Jul 2021 Oct 2021 Jan 2022 Apr 2022

60% reduction in complexity

X @rmaranhao

Reliability

1. Measuring Productivity

2. Drivers (developer POV)
a. Authoring Velocity
b. Reliability (incl. Quality)
c. Knowledge (incl. Readability)

3. What’s Next?

4. Q&A

X @rmaranhao

DIFF INTENT WITH DIFFBERT/LLM

o. PR R AN R R |, ggyuy s — Tit'e
) e s s e e |
T ==

i Summary

Test plan |

- | [-1.1451401710510254,
—— 1.3620548248291016,

-2.7420852184295654,
-2.5980613231658936,
5.120920181274414,

-3.0651018619537354,
-0.4263494610786438,
0.5120811462402344,
1.0371060371398926,

G ey Baee o W | L owet ——

e Diff embedding

Code changes

X @rmaranhao

DIFF INTENT vs. AV vs. RELIABILITY

Diff 1

J
L’_, _, fileA.py

—

AV = 3 hours _

— fileB.py
Diff 2

B

AV =9 hours > fileB.py

Diff 3

el

AV =1 hour > fileC.py

ORI

fileB.py
fileA.py

fileC.py

:

0

X @rmaranhao

TEST PLAN QUALITY vs. RELIABILITY

High quality test plans help improving review quality and engagement

e NLP-based techniques are well suited for predicting test plan quality

Technique is useful to inform improvements in developer tools and
experiences.

@ Pull requests with high quality test plans are observed to:
¥ be involved in fewer outages,
¥ be reverted fewer times,
¥ have more reviewer engagement.

| el [[—
DECISioNn TREE RoBERTa + CLASSIFIER RoBERTa + MATCHING NETWORK

X @rmaranhao

DEAD CODE REMOVAL

Dead Code Removal at Meta: Automatically Deleting Millions of
Lines of Code and Petabytes of Deprecated Data

Will Shackleton James Gill Luke Petre ©
Katriel Cohn-Gordon Nachiappan Nagappan Giorgi Megreli
Peter C. Rigby @ Karim Nakad Patrick Riggs
Rui Abreu Ioannis Papagiannis James Saindon
wshackleton@meta.com jagill@meta.com lpetre@meta.com
katriel@meta.com nnachi@meta.com gmeg@meta.com
pcr@meta.com knakad@meta.com riggspc@meta.com

ruiabreu@meta.com
Meta Platforms, Inc.
Menlo Park, CA, USA

ABSTRACT

Software constantly evolves in response to user needs: new fea-
tures are built, deployed, mature and grow old, and eventually
their usage drops enough to merit switching them off. In any large
codebase, this feature lifecycle can naturally lead to retaining un-
necessary code and data. Removing these respects users’ privacy
expectations, as well as helping engineers to work efficiently. In
prior software engineering research, we have found little evidence
of code deprecation or dead-code removal at industrial scale. We
describe Systematic Code and Asset Removal Framework (SCARF),
a product deprecation system to assist engineers working in large
codebases. SCARF identifies unused code and data assets and safely
removes them. It operates fully automatically, including commit-
ting code and dropping database tables. It also gathers developer
input where it cannot take automated actions, leading to further
removals. Dead code removal increases the quality and consistency
of large codebases, aids with knowledge management and improves
reliability. SCARF has had an important impact at Meta. In the last
year alone, it has removed petabytes of data across 12.8 million
distinct assets, and deleted over 104 million lines of code.

Dead Code Removal at Meta: Automatically Deleting Millions of Lines of Code

yiannis@meta.com
Meta Platforms, Inc.
Menlo Park, CA, USA

jsaindon@meta.com
Meta Platforms, Inc.
Menlo Park, CA, USA

ACM Reference Format:
Will Shackleton @, Katriel Cohn-Gordon @, Peter C. Rigby ©, Rui Abreu ©,
James Gill ©, Nachiappan Nagappan ©, Karim Nakad ©, Ioannis Papagiannis
, Luke Petre ©, Giorgi Megreli ©, Patrick Riggs ©, and James Saindon ©.
2023. Dead Code Removal at Meta: Automatically Deleting Millions of
Lines of Code and Petabytes of Deprecated Data. In Proceedings of the
31st ACM joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’23), December 3-9,
2023, San Francisco, CA, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3611643.3613871

1 INTRODUCTION

Software rapidly evolves to meet users’ changing needs. As it does,
some features become unnecessary, and the associated code and
data need to be removed. In this paper, we introduce SCARF, a
system which safely removes both dead code and data at scale.
Users expect organisations to only store their data when there
is a clear need and purpose, and achieving this goal is necessary
for every product that respects users’ privacy expectations. One
important aspect of this expectation is to prevent storing data for
which no purpose exists at all. At first, storing unused data for

and Petabytes of Deprecated Data, to appear at ESEC/FSE 2023

Enumerate code and data assets

Re'o:tionships

Runtime usage

NOILO3TIC

False—negative analys}s

Asset unolefs‘tomohng

Runtime-dead code c\nalt/sis

MMua“ ﬁno(ing cow\ple){
o(ele‘to&]e Subﬁrapks

Runtime usage inspection /
oV y

Hum—vaio!ep(
. overrides

Deprecate au‘tomoctica"y

Alert asset Get approv«l . Enact
owner GF necessary) B Guapanting ~| deprecation
Send ticket Ticket 4 PO\tCh Quarantine Purge
/ Send patch appmval / Commit patch / Push to Proo(uc‘tion

X

SS3v0ald

@

rmaranhao

Knowledge

1. Measuring Productivity

2. Drivers (developer POV)
a. Authoring Velocity
b. Reliability (incl. Quality)
c. Knowledge (Readability)

3. What’s Next?

4. Q&A

X @rmaranhao

MODELLING CENTRALITY OF DEVELOPER OUTPUT

— knowlege —

Modeling the Centrality of Developer Output with Softwarc
Supply Chains

Audris Mockus® Rui Abreu Yifen Chen

Peter C. Rigby ™ Parth Suresh* Nachiappan Nagappan

audris@meta.com ruiabreu@meta.com yifenchen@meta.com
pcr@meta.com parthsuresh@meta.com nnachi@meta.com

Meta Platforms, Inc.
Menlo Park, CA, USA

ABSTRACT

Raw developer output, as measured by the number of changes a
developer makes to the system, is simplistic and potentially mis-
leading measure of productivity as new developers tend to work on
peripheral and experienced developers on more central parts of the
system. In this work, we use Software Supply Chain (SSC) networks
and Katz centrality and PageRank on these networks to suggest
a more nuanced measure of developer productivity. Our SSC is
a network that represents the relationships between developers
and artifacts that make up a system. We combine author-to-file,
co-changing files, call hierarchies, and reporting structure into a
single SSC and calculate the centrality of each node. The measures
of centrality can be used to better understand variations in the im-
pact of developer output at Meta. We start by partially replicating
prior work and show that the raw number of developer commits
plateaus over a project-specific period. However, the centrality of
developer work grows for the entire period of study, but the growth
slows after one year. This implies that while raw output might
plateau, more experienced developers work on more central parts
of the system. Finally, we investigate the incremental contribution
of SSC attributes in modeling developer output. We find that local
attributes such as the number of reports and the specific project
do not explain much variation (R*> = 5.8%). In contrast, adding
Katz centrality or PageRank produces a model with an R? above

Y. T N YoV R P P D T T P T I P T

Meta Platforms, Inc.
Menlo Park, CA, USA

Meta Platforms, Inc.
Menlo Park, CA, USA

ACM Reference Format:

Audris Mockus, Peter C. Rigby, Rui Abreu, Parth Suresh, Yifen Chen, and Nachi-

appan Nagappan. 2023. Modeling the Centrality of Developer Output with
Software Supply Chains. In Proceedings of the 31st ACM joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’23), December 3-9, 2023, San Francisco, CA, USA.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3611643.3613873

1 INTRODUCTION

Improving and measuring software productivity is difficult and
many researchers and practitioners have simply measured output
as the number of pull requests, modification requests, or commits
a developer has produced. In this work, we hypothesize that the
work context can be partly characterized via structural proper-
ties of a network representing explicit and implicit relationships
among software artifacts and people. Software supply chains (SSCs)
represent the relationships between developers and artifacts in a
software project. For example, one common SSC is the network
of files that change together in a commit, with a node being a file
and edges between files in the same commit. Investigating how the
structural properties of SSCs explain the variations in developer
output has significant scientific and practical value. In this work,
we aim to a) construct software supply chains within a large and
diverse (in terms of programming languages, project size, and ap-

X @rmaranhao

WHAT TO DO WITH CENTRALITY/KNOWLEDGE AND INTENT?

'-.——0-0.—— PU“ RequeSt R
' Summary
[— - o~ — -y - -
Test PHIFFINSIENNIREE = = TSV Theaittneaiub i aineth St e
Assigned
Reviewers

-—

eeeee

Comments and Activity

-
I'd also suggest, limiting to “relevant”
people only (similar to tasks), i.e. only
show reviewers and subscribers.

Yesterday at 5:07 PM - Like - Reply

negen

Yeah, I'm fine with sorting those folks to
the front, but | definitely want to show
everyone who has looked at it. That's the
funnest part about the new feature. You'd
be quite surprised who looks at your diffs
-,

Yesterday at 5:12 PM - Like -
Reply - Edit

X @rmaranhao

CODE READABILITY

WORK IN
PROGRESS e aml Title

|
‘Summary

Test plan

FY e o [-1.1451401710510254,
e e 1.3620548248291016,
‘ -2.7420852184295654,
-2.5980613231658936,
5.120920181274414,

-3.0651018619537354,
-0.4263494610786438,

: = - 0.5120811462402344,
F"e% modified 1.0371060371398926,

< DIffBERT

} 6 e e r FROBRO "0

——

Diff embedding

Code changes

X @rmaranhao

1. Measuring Productivity

2. Debbie the developer
a. Authoring Velocity
b. Reliability (incl. Quality)
c. Knowledge (incl. Reliability)

3. What’s Next?

4. Q&A

X @rmaranhao

WHAT’S NEXT?

Predictions Integrations

X @rmaranhao

1. Measuring Productivity

2. Drivers (developer POV)
a. Authoring Velocity
b. Reliability (incl. Quality)
c. Knowledge (incl. Readability)

3. What’s Next?

4. Q&A

X @rmaranhao

