
From Myth to Legend
How Generative AI can Supercharge Productivity to Create 

10x Developers

Gautam Korlam
Principal Engineer

Serdar Badem
Lead Product Manager



Myth of the 10X developer



Knowledgeable

Productive

Perfectionist100



Modern software complexity
Thousands of services and 
hundreds of thousands of RPC 
calls





Innovation
trigger

Peak of inflated
expectations

Trough of
disillusionment

Slope of
enlightenment

Plateau of
productivity

Enter Generative AI

Analysts’ opinion 
of where the 
GenAI hype 
cycle is

Where we are 
today

GenAI Hype Cycle



Expectations vs (alternate) reality



Gen AI opportunities in SDLC



AI opportunities in the developer workflow
Design Develop Release Manage

Code Generation

Automated Fixes

Code Quality

Documentation

Design Review

UX Design

Knowledge Base, Support

Tailored to your enterprise

End to End 
Testing Incident Management



Automatic documentation freshness

Capture tribal 
knowledge from 
conversations in slack

Chat messages

Generate meaningful 
docs from commit 
descriptions

Code Commits

Search for relevant 
docs and update with 
distilled information

Update Docs



Automatic review of design requirements

Capture 
comprehensive 

requirements 
first time

Review design 
documents, 

provide 
automatic 

suggestions for 
improvement

Suggest 
changes to 

design based 
on existing user 

comments

PRD

ERD
PM, Product Ops, Sec, 

Privacy, Legal
Developer, Eng team, 

Eng Sec, Privacy Developer, Eng team



Faster UX design iteration



Internal survey results

+ Effective for simple boilerplate code and tasks29%
Acceptance 
rate

1.4
LOC per 
accepted code

75%
Feel more 
productive

6.0
NPS score
for Copilot

Our experience using code assistants

Copilot is really useful for writing 1-2 
lines of straightforward / repetitive 
code

- Code suggestions frequently need further editing

It frequently has small misses.
I find myself usually double-checking 
Copilot's work for longer than it would 
have taken me to just write that work 
myself.

https://docs.google.com/presentation/d/19YZIHmFmVbqSAdxel7c3fXi8Gnh0miSwCXjctEAC9Oc/edit#slide=id.g117b23325d2_0_597


Code assistants are useful for simpler tasks

https://docs.google.com/file/d/1wLH3pBtXa5uRpVJZMM2ngJgBQ4i6Ftam/preview


Gen AI beyond code completion



Uber code assistant

Fine tuned LLM

Uber code base

Code 
suggestions

IDE
context

Based on 
open-source 

Codellama

IDE



Automatically improve code quality

</>

Review
& approve 
changes

Continuously fix tech debt  in 
the existing code base

Generate Pull 
requests with 
fixes

Fix new errors in PRs

Write 
initial 
code

Create a PR

Review
& approve 
changes Suggest an 

automatic fix

Suggest fixes in the IDE & local 
builds

Code corrections 
while writing it

Auto-fix 
suggestions 
within the IDE



 18

Incident in 2021 due to MisusedWeekYear
“Week year” is intended to be used for week dates, 
e.g. “2015-W01-1”, but is often mistakenly used for calendar dates, e.g. 2014-12-29

7K
Java errors / week

15min*
Dev time / error

@SuppressWarnings("MisusedWeekYear")

private static final DateTimeFormatter IDEMPOTENCY_DF= 

DateTimeFormatter.ofPattern("MM_YYYY");

Impact of errors in code

https://incidents.uberinternal.com/incident/b407b0fd-28c7-4f80-91c9-32906ab381e1
https://errorprone.info/bugpattern/MisusedWeekYear


 19

Code Fixed 
Code

875
Dev hrs saved 
per week*

3.5K
Errors auto- 
fixed / week*

AI Prompt 
Engineering

Large 
Language 

ModelCode analysis

Automatically fix errors in code



Pipelines > iOS Build

Automatically fix CI errors

Test
Build #4 master  HEAD

Job …

Job …

Develop

Continuous 
Delivery

Submit 
Queue

 Code 
review  CI buildLocal 

development

Build or 
test failure

Changes 
requested

Build, test or 
merge failure

Build 
failure

Root cause, reproduce and debug

Edit

Build

Run

CI Failure 
Rate is
HIGH 

CI execution 
Time is
HIGH 

HIGH IMPACT WHEN

https://buildkite.com/uber/build-ios-monorepo2/builds?branch=master


Automatically fix code review feedback

Categories of review feedback fixed
● Rename, annotate or change type (11%)
● Nitpicks (3%)
● Other actionable feedback (6%)

○ Logging
○ Exception handling
○ Null checks
○ Collection & streams
○ Date & time APIs
○ Missing documentation

Reviewer comment

10K
Diffs / week

1hr
Dev time/diff 

~$1M
 Cost per week 

2K
Dev hrs saved 
per week

$10M
Savings per 
year

2K
Auto-fixes / 
week

AI suggested fix



Automatically fix issues in the IDE

for _, item := range items {
go func () {
… = item
}()
}

Implicit capture-by- reference 
of free variables in goroutines

Concurrent accesses to Go’s 
built-in, thread-unsafe maps

resultMap := map[UID]string {}
for _, uuid := range UUIDs {
go func(key) {
if …
resultMap[key] = Process(key)
}(uuid)
}

Mixing message-passing with 
shared-memory

func (f *Future) Start() {
go func() {
f.result = f.fPtr()
f.ch <- 1
}()
}

func (f *Future) Wait(ctxt Contex) error 
{
select {
case <- f.ch:
return nil
case <- ctxt.Done():
f.result = TimeOutErr
return TimeOutErr
}
}

Concurrent accesses to Go’s built-in, thread-unsafe 
maps cause frequent data races

View Problem (F8) Accept Fix

AI suggested fix for data races



 23

Eliminates costly 
test maintenance

Higher quality, 
less effort

Automatic app testing

AI generated 
mobile test flow

https://docs.google.com/file/d/1_lK4jNG9kIlFCq2ML_xEdNbz--QSaVUw/preview


Efficient incident management

On-Call

Incident response

Postmortem

Incident review

● Pager-Duty
● Rotation, alerts, runbooks
● Improve signal to noise ratio

● Identify incident and respond
● Mitigate incident
● Communicate incident ● Identify root cause

● Write post-mortem
● Peer review ● Select incidents for review

● Conduct incident review
● Plan and prioritize follow-up 

work

AI generated Handoff 
notes

Anomaly detection
Incident leveling
Enrich with similar 
incidents
Catch me up with status Find the root cause

Identify related events
Suggest mitigation steps
Generate post mortem
Assess the post mortem

Find frequent fault areas
Create follow up actions



Automate developer support

Slack bot to answer questions



The Future



How to get started?



?
?

??

Considerations

LatencyWhich LLM? Knowledge 
context?

Time to 
market

CostWhere to 
host?

Tune LLMs 
in-house

Where to 
host

Which 
LLM

Knowledge 
context?

Time to 
market Cost Latency

Vendor 
hosted

VPC

On-prem

OpenAI

Google 
Vertex

Antrophic
…
…

Generic 
knowledge
Company 
Limited

Company 
High 
context

Critical

High

Medium

Low

$$$$

$$$

$$

$

Sensitive

High

Medium

Low

Offline

Out-of-box 
LLMs via APIs 

Tune LLMs 
via APIs

Which 
model?



Evaluate potential risks

RISKS

● Data privacy - 
Sharing private data 
with a 3rd party

● IP - Risk of exposing 
own IP into public 
domain

Data sent to LLMs

● IP - Risk of getting 
back other’s 
copyrighted content

● Quality - Accuracy of 
the outputs

● Explainability - Not 
being able to trace 
back the output to its 
source

Data suggestions from LLM



Get your team excited

Business 
operations

Developer 
productivity

Product 
experience

700+
Participants

100
Projects demoed

6
Sites around the 
globe

3
Broad 
categories

Internal Hackathon



Takeaways

- Modern software development is complex
- Gen AI promises to tame this complexity
- Lots of opportunities in realizing these promises
- The entire Developer workflow needs to be rethought with AI
- Let’s get started!



Thank you!
Questions ?



Backup



Design Develop Release Manage

Developer workflow: AI opportunities

Code & test generation
Automated dependency upgrades, 
Config generation, 
Auto-refactor legacy code
Debugging: Debug helper, 
Testing: Auto generate unit tests, 
Automated fixes: Automated data race detection, code fixes
Code review: Automate code reviews, Auto fix based on review 
comments
CI debugging: CI failure classification

Incident mitigation: 
Troubleshoot analytics events, 
Oncall assistant

Automated E2E & mobile Testing: 
Auto generate mobile, localization 
tests 

Requirements
Write requirements
Review design docs
Risk assessment
UX design
UI/UX design

Code & test gen Testing

Automated fixes

Code review

AI OpsDesign 
docs, 
review, risk 
assessment

Documentation: Auto generate & update documentation, 
Oncall experience: Chatbot for internal knowledge base

Knowledge Base (Messaging, documentation, collaboration tools)



Design ERD automatic review

Design 
Documentation

Prompt 
Engineering
  Few-shot 
  Chain of thoughts
  Self debugging
  Tree of thoughts

Feedback & 
comments

Design 
document

Reviewed 
design 
document 

User 
review / 
accepta
nce

Generate 
Code/Test 
Fix

VectorDB

https://lucid.app/lucidchart/627ae89a-5760-494f-b650-0d83f8308a98/edit?page=0&v=425&s=719.9998488188977
https://lucid.app/lucidchart/627ae89a-5760-494f-b650-0d83f8308a98/edit?page=0&v=425&s=719.9998488188977
https://lucid.app/lucidchart/627ae89a-5760-494f-b650-0d83f8308a98/edit?page=0&v=425&s=719.9998488188977
https://lucid.app/lucidchart/627ae89a-5760-494f-b650-0d83f8308a98/edit?page=0&v=425&s=719.9998488188977
https://lucid.app/lucidchart/627ae89a-5760-494f-b650-0d83f8308a98/edit?page=0&v=425&s=719.9998488188977
https://lucid.app/lucidchart/627ae89a-5760-494f-b650-0d83f8308a98/edit?page=0&v=425&s=719.9998488188977
https://lucid.app/lucidchart/627ae89a-5760-494f-b650-0d83f8308a98/edit?page=0&v=425&s=719.9998488188977


10K @SuppressWarnings in Java codebase

Other analyses in progress

● Go data races

Incident in 2021 due to MisusedWeekYear

@SuppressWarnings("MisusedWeekYear")

private static final DateTimeFormatter IDEMPOTENCY_DF= 

DateTimeFormatter.ofPattern("MM_YYYY");

“Week year” is intended to be used for week dates, 
e.g. “2015-W01-1”, but is often mistakenly used for 
calendar dates, e.g. 2014-12-29

7K
Java errors / 
week

15min*

Dev time / Error 

* Google study

875
Dev hrs saved 
per week

3.5K
Errors auto- 
fixed / week

Automatically fixing static analysis errors

https://incidents.uberinternal.com/incident/b407b0fd-28c7-4f80-91c9-32906ab381e1
https://errorprone.info/bugpattern/MisusedWeekYear
https://dl.acm.org/doi/pdf/10.1145/2568225.2568255


AI-driven automated Mobile End-2-End Testing

E2E automation 
challenges
● Flakiness
● Maintenance
● Different languages
● Impossible to shift left

AI-based E2E testing 

https://docs.google.com/file/d/1GtLIWnbtcxy366Krk8cM8eFUpgvjubDH/preview


 38

Sites around the 
globe

Projects demoed

Participants

Finalists selected

Uber Tech-wide 
HackDayz

6713

98

21

Code generation, Code reviews, 
Automated fixes, Testing & debugging,  
Knowledge base

Delivery experience, Rider experience, 
Earner experience 

Operations improvements, Data & query 
optimization, Security, Privacy & safety risk, 
Employee experience

Business operations

Developer productivity

Product experience

6
Winners

Broad categories

3



How to create internal LLM



Coding assistant

Automated testing

Automated fixes

RolloutERDPRD Continuous 
Delivery

Submit 
Queue

 Code 
review  CI buildLocal 

development
Production 
management

Edit

Build
Run

Static / dynamic analysis
Review comments
Code migrations Automated mobile E2E 

testing

Copilot Live
Copilot X Upcoming

Test failures
Bugs

Service rollbacks
Monitoring

Crashes

Build or test 
failure

Changes 
requested

Build, test 
or merge 
failure

Build 
failure

Incidents
Monitoring

Bugs
Crashes

Design Develop Release Manage

What we have been able to get it to do





Not so great if …Great if your task is …

● you already have an effective ML 
solution that’s performing well 

● (e.g., NLP classification)
● The cost of being inaccurate IS very high 
● Explainability of a prediction IS very 

important 
● Your use case is highly sensitive to 

latency 

Gen AI or Not?

● Related to natural language processing or 
image/video/audio creation

● Translation, summarization, sentiment 
analysis, extraction, search, similarity, retrieval

● Requires general knowledge and/or 
reasoning

● You have very little training data 
○ i.e., zero / few shot learning



brand palette 
For more information and guidance 
on using brand colors, click here

Our color palette embraces a full spectrum of color and has been brightened for its legibility and 
accessibility. All colors are ADA compliant when used as a background paired with black text or 
when used as colored typography paired with a black background. 

For Mobility, be sure to use white or color headline text on a black background. 
For Delivery, be sure to use black text over a color background.

 
#276EF1 (Safety Blue)

 
#0694C1

 
#06C167 (Eats Green)

 
#6ABB00

 
#FFD643

 
#6C9DF8

 
#4AC8DB

 
#4EC78C

 
#A0CD64

 
#FFE27C

 
#B3CDFE

 
#8ADFEC

 
#8EE1A9

 
#BBD896

 
#FFF1C1

 
#FFA200

 
#FF5F27

 
#EE2B43

 
#E84FB1

 
#9145FF

 
#FFC35B

 
#FF8961

 
#FF7373

 
#FF7BB0

 
#9A60EF

 
#F4D790

 
#FFB298

 
#F1998E

 
#FFA8CB

 
#B29DF4

#FFFFFF

#000000

Color

https://brand.uber.com/document/87#/parent-brand/color
https://brand.uber.com/document/87#/parent-brand/color


Let’s get started!

 44


