
This Year in Uber’s
AI-Driven Developer
Productivity Revolution

Adam
Huda

Ty
Smith

2

Cities

Countries

Annualized run-rate gross
bookings

Monthly active platform
consumers

Uber’s Scale
$160billon 156million 10,000

+

70
Trips per day

30million

Public figures for the quarter ended June 20, 2024

7.4million
Monthly active drivers
and couriers globally

https://investor.uber.com/home/default.aspx

Eats App
Platform

Platform Leverage

Feature
engineers

4,500
Developer Platform
engineers

200

Support ratio

22:1
Developer Platform

Part of Platform Engineering

Engineering sites

3+
Rider App
Platform

Feature Teams
Backend, Frontend

Earner App
Platform

App & Service Frameworks

Monorepo Tooling & Build
System

IDEs & Tools

Internal Libraries & Guardrails

Training & Documentation

Developer Experience

Microservices

5k+

Major mobile
apps

3
Monorepos for Swift, Kotlin,
Typescript, Go, Java, and
Python

6
Minor mobile
apps

6

Net promoter
score

+8

Technical Debt

Lines of code across all of
the monorepos

100million+

● Backlog of updates
● Fragmentation
● Test coverage

Macro Trends
● Flat

headcount

● Backfills not
guaranteed

Emergence of AI as
Leverage

Can’t scale people with the growth
and maintenance needs of the
codebase

Can we position Developer Platform
to be AI-driven?

Org
High-level
View

Created a
centralized AI
DevEx team
that
specializes in
AI applied to
the SDLC

Platform Engineering

Quality & Productivity Engineering

ML Infrastructure

Developer Platform

Mobile
Platform

Testing
Automation

Backend
Platform

Programming
Systems Code Infra IDE

AI Foundations & Developer Experience

Inaugural Hackdayz
Oct 2022

Exploring generative AI
Hackdayz Summer 2023

Building automation and
becoming AI-driven
Hackdayz Winter 2024

Focus on agentic systems
Hackdayz Summer 2024

Timeline
Applied-AI
Developer Tools

The ChatGPT moment
Nov 2022

Agentic Systems
Multi-step systems to interact
with LLMs

Breaks down a problem
space into manageable tasks

You’ll see some examples
in our upcoming stories

Applied-AI SDLC
Stories
1. Coding Assistants
2. Generating Tests
3. Java to Kotlin Migration

DEVELOP RELEASEDESIGN OPERATE MAINTAIN

DEVELOP RELEASEDESIGN OPERATE MAINTAIN

Coding
Assistants

Broken Example Caused By IDE validation

IDE Plugin
Language Intelligence
Semantics, syntax, references & symbol
navigation

Verification
Deterministic fixes for generated
suggestions.

Extensibility
Adapt to development environments,
workflows, & custom tools

Model backend
Foundational model and context
awareness

Code Assistants
Basics
● Native Plugin with Language

Intelligence
● Model Backend

Contributes to UX and Result
Quality

Hypothesis
An Uber trained IDE
assistant is needed

Requirements
● Uber aware
● Fast
● Cost effective
● Per user analytics
● Workflow integrated

Custom Code Assistants

Buildout
● MVP in Hackathon
● Evaluate LLMs
● Internal evangelism
● Wide variety of investments

Custom Code Assistants

Code
suggestions

IDE

In-House Coding Assistant
Goals:
● Increase acceptance rate by +10%
● latency <1s for 100 tokens

Swift

Kotlin

Go

Java

Typescript

Monorepo
Corpus

Python

Code
Context

Gathering

Input, Context

Assistan
t

Proxy

Fine-tuned LLM

Syntax
Post

Processin
g

Downsides
● 6 months of work
● Underfunded
● Always playing catch up

Code Assistants

What we learned
● MVPs are easy, productionisation is hard
● Latency requirements vary per tool
● User Experience matters
● UI surface cannibalization is a risk
● Follow ecosystem principle
● Continuously evaluate landscape

In-house Coding Assistant

Focused on GitHub Copilot
adoption & evangelism

Building on Industry
Tools

Reusable Components

Code Context Gathering

Assistan
t

Proxy

Fine-tuned LLM

Summarize & rank code
context to provide best
input to use-cases:

Gather telemetry

Custom model with
knowledge of internal
libraries, custom
frameworks, and
company-specific best
practices

In-house Coding Assistant

Crash Fixer

Linter
Warning FIxer

Data Race
Fixer

Extend with chat @partcipants
@genie for
monorepo
knowledge base
queries

GitHub Copilot Coding Assistant

Hands-on
workshops
Running once per
month to spread
knowledge

Experience iterating
with LLMs and
probabilistic outputs

GitHub Copilot Coding Assistant

Internal Evangelism Content
Chat participants

@workspace
@vscode

Extensible!

Chat commands

/doc
/explain
/fix
/tests
…

Chat context

#codebase
#editor
#file
#selection
….

GitHub Copilot Coding Assistant

A series of codelabs that teach these engineers about providing context,
using chat participants, and commands to refactor code and generate
tests

Coding Assistants

GitHub Copilot Coding Assistant

Future
● Platform Native
● Vendor Fine Tuning
● Extensibility Increases
● Open-source clients
● Multi Vendor Landscape
● Enterprise Requirements

Generating
Tests

DEVELOP RELEASEDESIGN OPERATE MAINTAIN

Unit

Classic Testing Strategy
More interconnection,
slower, fewer tests

Snapshots

Functional UI
Component
Integration

Manual
End-to-end

More isolation,
faster, more tests

Testing Challenges

Writing good tests can be hard

Maintaining many different types
of tests is tedious

Permutations of languages,
cities, experiments, platforms

AI-Driven Testing Pyramid

End-to-end AI testing
agents

UI Validators
Screens are validated for typography,
localization, alignment, etc.

AI-powered code
generation of
unit tests

● Analyze quality of tests
● Predictive test selection

AutoCover Requirements
● Keep the

developer-in-the loop

● Focus on regression
tests

● Increase coverage

Tests are streaming
in…

AutoCover
in action

Prepare
Files &
Mocks

AutoCover
IDE Plugin
v1

Break up the
problem

Mimic
human
heuristics

Generating Tests

Agentic design,
built with
LangGraph

Build &
 Run Tests

Fix Failures

Generate
Test code

Increased
test
coverage

Deterministi
c
Probabilistic

Is it writing
“change
detector” tests?

Automating
away all this
tedious
work…

This needs to be
labeled “generated
with AI!”

Prepare
Files &
Mocks

Refactor
Table Test

AutoCover
IDE Plugin
v2

Validation
step: Check
assertions
against intent

Refactor step:
Adopt best
practices like
the table
pattern

Generating Tests

Build & Run
Tests

Fix Test
Failures

Generate
Test code

Validate
Test

Quality

What’s next
IDE/CLI for humans
● Table test refactor
● Validate test quality

Headless mode
● Shift-right, runs on CI
● Improve quality of existing test code

Generating Tests

Mutation testing step
● Inject bugs (“mutants”) into

the source code
● See if it finds bugs
● Generate mutants with AI

Migrating
 To
 Kotlin

DEVELOP RELEASEDESIGN OPERATE MAINTAIN

Kotlin History at Uber

Java
Kotlin

Minimal platform
usage

Google standardizes

Limited product
support

Banned Java

Joined Kotlin
Foundation

Assisted
Migrations

Mixed Sources

Published
evaluation

Full Product
support

Organic
Adoption

Manual
Migration
s

Fi
le

s

Kotlin Migrations

Decentralized
● Workflow incentives
● Industry standard
● Developer assisted

Verified Kotlin

Kotlin Migrations Today

ReKtify
Preprocesso

r
Intellij J2K Rektify

Processor
Git History

Preservation

Preprocesse
d Java

Draft Kotlin Processed
Kotlin

Manual
Verification

CI & Code
Review

Tool

Human in the
loop

Rektify Processors

Post Processors
● AndroidTextUtilsRule
● CaptorAnnotationRule
● GuavaStringUtilsRule
● LambdaExpressionRule
● MockAnnotationRule
● RemoveInitMocksRule
● AutoDisposeRule

Pre Processors
● Nullable Annotations

Kotlin Migrations

Java
Kotlin

Fi
le

s

Automated Kotlin Migrations

ReKtify
Preprocesso

r
Intellij J2K Rektify

Processor
Git History

Preservation

Preprocesse
d Java

Draft Kotlin Processed
Kotlin

Uber J2K

Automated Kotlin Migrations

Uber J2K

Automated Kotlin Migrations

Uber J2KBuildKite CI & TestHeadless
Intellij

Code
Review

Automated Kotlin Migrations

Uber J2KBuildKite CIHeadless
Intellij

Code
Review

AST Rule
Authoring

Kotlin Migrations

Centralized
● Industry group
● ~3 Years

Java
Kotlin
Rules

Can AI go faster?

LLM Kotlin Migration

Positives
● Flexible use cases
● Fast to deploy

Negatives
● Hallucinations possible
● High risk failures
● Humans are fallible

Combining AST + LLMs

AST + LLM

Positives
● Prior Art
● Deterministic
● Faster than human authored

Rules
Negatives
● Slower than LLM only

Dataset

Java
Kotlin

Dataset

Devpod 2CLI Git HashPSSH

Devpod 1 Git Hash

Devpod N Git Hash

Uber J2K

Uber J2K

Uber J2K

Commit
Delta

Commit
Delta

Commit
Delta

Dataset

LLM+AST Kotlin Migrations

Dataset

Rektify
Source

LLM

Draft
Rektify
Rule

Uber J2K CI

LLM
Rektify
Rule

Human
Review

Prompt

Tool

LLM

Human in the
loop

Kotlin Migrations

LLM+AST
● 50% Faster
● 18 Months

Java
Kotlin
Rules

Finishing the Migration

Challenges
● Rollout risk
● Begin in low risk areas
● Categorization of rules
● Noise fatigue

Questions
● LLM fallbacks
● Batch size
● Speed of innovation

Wrap up

Measuring AI impact
PR velocity increase

~10
%
~30%

Adoption~60%
Acceptance Rate

Measuring AI impact

Challenges
● Fragmentation
● Organizational Cost

Risks
● Side Effects
● Wrong Investments
● Missed Investments

Measurement Philosophy
Lead with qualitative

Normalize quantitative impact on
developer hours saved to prioritize
bets

Potential impact of
automating away of
technical debt

1000+years

Developers report
significant increase
in productivity

63%

Opportunities
Quality and velocity

Manage expectations
and hype

Combine deterministic
approaches with new
probabilistic capabilities

Quality ->

Ve
lo

ci
ty

 ->

Transformational
bets

Quick wins

Legacy world Accelerant use cases

AutoCover

Java to
Kotlin

Coding
Assistant

Crawl, walk, run

Find the sweet spot
of what’s possible
now and will be
possible soon

But be ready for
what’s coming

Demand for good software is
near ∞ Humans

● More time building
● Focus time on the

craft of software
engineering

● Break down
complex problems

● Define architecture
● Set best practices

AIs
● Reduce toil for

migrations
● Increase test

coverage
● Give humans more

options
● Help humans think

about problems

Ty Smith
Principal Eng
Developer Platform

Adam Huda
Sr. Eng Manager
AI Foundations
& Developer Experience

Questions?

