
Unlocking Developer Productivity
and Happiness

Kelly Hirano
Director of Engineering
hirano@meta.com

Akshay Patel
Engineering Manager
akshaypatel@meta.com

Create a new era of engineering that amplifies developer creativity.

We are part of Infra and build developer tools and systems. Meta invested early in this area and is a
core value to the company and our engineering culture.

● 10k’s developers
○ Over a dozen programming languages
○ Globally distributed, WFH and office
○ 100+ device types
○ Invisibly scaling to billions of users

● 100k changes/day, continuous deployment
● Billions lines of code
● Targets: Android, iOS, www, ASIC, firmware, AR/VR devices, AI/ML, Research

Engineers want the speed and ease of a startup at Meta’s scale

The Relatable The Less Common
• Task Management
• Source Control
• Code Authoring
• Code Review
• Build
• Test
• CI
• Outage Remediation
• Sentiment Survey

• Data Scientists, Data Engineers
• User Researchers, Designers, PMs
• Research SWEs, MLE/MLR (GenAI)
• Language Developers
• Compiler, Compression Experts
• Productivity Insights
• Impact-driven prioritization

Without a common way to describe the problem,
we can’t effectively talk about it, let alone solve it.

Review and
LandCreate a Diff Post-ReleaseReleasePlan

Review and
LandCreate a Diff Post-ReleaseReleasePlan

Coordinating &
Managing Work

Tasks

Team Backlogs

Calendar

Technical Design

Code Browsing

Code Authoring

Dev Env

IDE

Source Control

Code Verification

Test

Debuggers

Incremental Builds

Code Review

Phabricator

Continuous
Integration/ Land

Integration Test Build

CI/Test

Land

Release

LLVM, Redex, etc

Health Validation

Phased rollout

Release Builds

App Stores distro

Monitor, Investigate,
Mitigate

Health: Crashes, Scroll
Perf, etc

Detection

Investigation

Mitigation

Dashboarding

Release

Dev Env
Code
Test and Debug
Local Preview

We can’t solve everyone’s problems

Self-service
splits by:

Repo
Language
IDE
Ecosystem
Tenure
IC Level

“In the last 3 months, how satisfied or
dissatisfied have you been with each of
the following aspects of your experience
authoring code in C++ using VSCode?”

● Tools are fast
● Tools are reliable
● Tools have the right features to help you

accomplish what you are trying to do
● Available libraries and frameworks for this

language are comprehensive and ergonomic

C++ was worst across all languages

% of C++ files successfully opened with
fully functional language services

P90 time it take for C++ files to open and
have all language services ready

% of C++ code navigation actions give
accurate results against 100 top used files
opened by devs every day

% Find All References weighted
consistency for C++

Come up with a metric that actually represents the
user pain and drive it down.

Good
Bad, above this negative feedback increases

��Engineers Data Science

L2

L1

L0

Operational Metrics Build Latency

Sync Tooling
Context SwitchesDriver + Empathy Metrics

Developer FlowTop-Line Metrics

Output

Sentiment

Observational

Velocity

Quality

Goaling

Diffs over
Time

Velocity

Quality

Sentiment
DevX Survey and In-Product Feedback

Create a diffPlan Review & Land Release Post-release

Time Spent
Coding per Diff

Percent Time
Coding

Diff Processing
Time

Diff Release
Time

Risk Score Product QualityTest HealthCode Quality

Mean Time to
Mitigation

DevX Survey and In-Product Feedback

Goaling

Observational

Output

Observational

Diffs over
Time

Velocity

Quality

Sentiment
DevX Survey and In-Product Feedback

Create a diffPlan Review & Land Release Post-release

Time Spent
Coding per Diff

Percent Time
Coding

Diff Processing
Time

Diff Release
Time

Risk Score Product QualityTest HealthCode Quality

Mean Time to
Mitigation

DevX Survey and In-Product Feedback

Goaling

Observational

Output

Observational

Review Wall
Time

Diff
Reviewed

First
Command

First Commit Diff
Created

Diff
Published

Diff
Accepted

Diff
Shipped

Diff Landed

Diff Processing TimeAuthoring Time

Accepted to
“Shipped” Wall Time

● Diff Processing Time is a wall time metric based on the timestamp of a diff, from
created to published to reviewed to accepted to landed

● Authoring Time captures the engineering time spent per diff that can be be
further broken down into components such as time spent in IDE vs knowledge
acquisition

Diffs over
Time

Velocity

Quality

Sentiment
DevX Survey and In-Product Feedback

Create a diffPlan Review & Land Release Post-release

Time Spent
Coding per Diff

Percent Time
Coding

Diff Processing
Time

Diff Release
Time

Risk Score Product QualityTest HealthCode Quality

Mean Time to
Mitigation

DevX Survey and In-Product Feedback

Goaling

Observational

Output

Observational

● Modern languages Swift or ObjC

● Modern frameworks legacy APIs

● Dead code stale experiments

● Code complexity code branching

● Modularity large dependency graphs

● Test health flaky tests

● Documentation undocumented APIs

Sample Signals

● Holistic score to capture health of
codebase at rest

● Every signal is validated against velocity
and outage prevention

Code Quality Score

● How likely is it that this change will cause an
outage?

● Uses cutting edge LLM’s to build predictive
models for risk

● Provides engineers a prioritization
mechanism to refactor + test code

● Dual benefit of landing low-risk code during
code freezes as well as prevent high-risk
code from getting in

Diffs over
Time

Velocity

Quality

Sentiment
DevX Survey and In-Product Feedback

Create a diffPlan Review & Land Release Post-release

Time Spent
Coding per Diff

Percent Time
Coding

Diff Processing
Time

Diff Release
Time

Risk Score Product QualityTest HealthCode Quality

Mean Time to
Mitigation

Goaling

Observational

Output

Observational

The Relatable Stuff

• Sentiment Survey across phases of
dev journey

• Runs every 6 months
• Self-service cuts for every team
• De-dupe surveys to prevent fatigue

The Unique Stuff

• Empathy Metrics to predict sentiment
where possible to reduce survey length

• e.g., CI Reliability and Focus Time
have a strong correlation with
sentiment for each area

• Support load for engineers

Diffs over
Time

Velocity

Quality

Sentiment
DevX Survey and In-Product Feedback

Create a diffPlan Review & Land Release Post-release

Time Spent
Coding per Diff

Percent Time
Coding

Diff Processing
Time

Diff Release
Time

Risk Score Product QualityTest HealthCode Quality

Mean Time to
Mitigation

DevX Survey and In-Product Feedback

Goaling

Observational

Output

Observational

● Number of changes (diffs) each
developer lands into the codebase

● Not generally useful for teams to goal on
but helps identify systemic trends

● Intuition typically points to levers like
Build and CI which are not large enough
movers at scale

● Data Science analysis lets us identify
behavioral drivers based on output

1a. Technical Managers
1b. Review Time
1c. Time to Ship

Executing
Roadmaps

Setting
Team
Norms

Building
Efficient
Teams

2a. Project Management
2b. Focus Time

3a. Prolific Coder and Reviewers
3b. Fast Ramp Ups for New Hires

● Get to a canonical version of the world

● Intentionally prioritize user cohorts

● Ladder metrics to help teams focus on what
they can drive

● Have goaling and observational metrics that
fit your business

Kelly Hirano
Director of Engineering
hirano@meta.com

Akshay Patel
Engineering Manager
akshaypatel@meta.com

