
Gaining
Actionable Cross-Project

Build Insights
From Experience to Implementation

Gradle
DPE Summit 2024

Who we are

Etienne StuderLaurent Ploix

Senior Product Manager SVP of Engineering &
Develocity Co-Founder

Agenda

Data-informed Development
Use cases

Collection and Revelation of Build Data
A journey

Data Informed Development

Knowledge
● Actionable Insights
● Reports

Information
● Metrics
● Charts & Dashboards

Data
● Query-able
● Raw

CI Failures

What to focus on?

Infrastructure

Product

Test framework

Tests

Dev

CI Infra

?

Why does it fail? Who gets to fix it?

Knowledge
● What to fix, by which team

Information on Flaky Tests
● Test / Framework / Product / Infrastructure

Data:
● Test results

Faster machines
What could possibly go wrong?

Because… humans

1. Long queues in CI

2. Double the speed of the CI machines

3. CI queues disappear

4. Wait 2 weeks

5. Get even longer CI queues

6. …

7. ???

Knowledge
● Developers run their builds in CI

because it’s faster

Information
● More CI builds
● Fewer local builds

Data:
● CI builds
● Local builds

Large Migrations

Are we there yet?

App App App App

Library version

App App App App

Library v1 Library v2 Library v3 Library v4

JDK 7

JDK 20

JDK 8

Knowledge
● Which dependency to update
● Where to update the Build Platform

Information
● All apps, all dependencies
● All apps, all Toolchain elements

Data:
● Source code
● Build configurations
● Build logs
● SBOM

Many repos to optimize

Navigating the Build jungle

2 repos x 30 minutes x 1000 builds/day

=

2K repos x 3 minutes x 10 builds/day

Toolchain Observability

Across all projects

Agenda

Data-informed Development
Use cases

Collection and Revelation of Build Data
A journey

Comprehensive build data is
the foundation for developer

toolchain observability

Develocity build plugins eavesdrop what
happens while the build is running

 plugins {
 id("com.gradle.develocity") version "3.18.1"
 }

 develocity {
 server = "https://develocity.company.net"
 }

./gradlew build --init-script develocity-init.gradle

Build progress is tracked in the form of
fine-grained build events

 public class TaskStarted_1_4 extends TaskStarted_1_3 {

 public final String buildPath;

 public TaskStarted_1_4(long id, String path, String className,
 @Nullable Long thread, String buildPath,
) {
 super(id, path, className, thread);
 this.buildPath = buildPath;
 }

 ...
 }

Build events are uploaded to the
Develocity server and persisted as a blob

in S3-compatible storage

Build events are uploaded to the
Develocity server and persisted as a blob

in S3-compatible storage

A single build is visualized as a
Build Scan by on-demand converting the
build events into a Frontend build model

A single build is visualized as a
Build Scan by on-demand converting the
build events into a Frontend build model

A single build is visualized as a
Build Scan by on-demand converting the
build events into a Frontend build model

Highly specialized Develocity
 cross-build dashboards are backed by

projection tables in the DB

Highly specialized Develocity
 cross-build dashboards are backed by

projection tables in the DB

Highly specialized Develocity
 cross-build dashboards are backed by

projection tables in the DB

Highly specialized Develocity
 cross-build dashboards are backed by

projection tables in the DB

More questions can be asked
about the build data than can be

provided with built-in dashboards

The fine-grained build events can be
consumed via API in their raw format

id: dcetsxpvueltk
event: Build
data:
{"toolType":"maven","agentVersion":"1.22.1","toolVersion":"3.9.9","buildId":"dcetsx
pvueltk","timestamp":1727267831018}

id: 0
event: BuildEvent
data:
{"timestamp":1727267724835,"type":{"majorVersion":1,"minorVersion":0,"eventType":"M
vnBuildStarted"},"data":{}}

id: 1
event: BuildEvent
data:
{"timestamp":1727267724835,"type":{"majorVersion":1,"minorVersion":0,"eventType":"M
vnHardware"},"data":{"numProcessors":8}}

/build-export/v2/build/dcetsxpvueltk/events

The build data can be consumed via API
as higher-level build models that provide

specific views on the data

{
 "id": "uywcwqs7bhhqc",
 "buildStartTime": 1727268163248,
 "buildDuration": 27285,
 "gradleVersion": "8.10.2",
 "pluginVersion": "3.18.2-rc-1",
 "rootProjectName": "dv",
 "requestedTasks": [
 ":lib-common:verify"
],
 "hasFailed": false,
 "tags": [
 "CI",
 "base_release",
 "Linux",
 "Release"],
 ...

/api/builds/uywcwqs7bhhqc/gradle-attributes

 "buildOptions": {
 "buildCacheEnabled": true,
 "configurationCacheEnabled": false,
 "configurationOnDemandEnabled": true,
 "continuousBuildEnabled": false,
 "continueOnFailureEnabled": true,
 "daemonEnabled": true,
 "dryRunEnabled": false,
 "excludedTasks": [],
 "fileSystemWatchingEnabled": true,
 "isolatedProjectsEnabled": false,
 "maxNumberOfGradleWorkers": 4,
 "offlineModeEnabled": false,
 "parallelProjectExecutionEnabled": true,
 "refreshDependenciesEnabled": false,
 "rerunTasksEnabled": false
 },

The build data can be consumed via API
as higher-level build models that provide

specific views on the data
- General attributes of each build
- Multi-module/project structure
- Build cache performance characteristics
- Network activity
- Resource usage
- Applied plugins
- etc.

Customers must be able to
instantly ask their own questions

about the build data

Build models can be queried via
big query services available from

common cloud providers

Build models can be queried via
big query services available from

common cloud providers

Build models can be queried via
big query services available from

common cloud providers
- Using ORC to store build data is faster to query and requires less disk space
- Storing multiple builds per ORC file avoids AWS S3 rate limits
- Using tables to mimic materialized views avoids slow UNNEST queries

Pre-built Grafana dashboards can be
connected to big query services to gain
actionable build insights across projects

Pre-built Grafana dashboards can be
connected to big query services to gain
actionable build insights across projects

Pre-built Grafana dashboards can be
connected to big query services to gain
actionable build insights across projects

Pre-built Grafana dashboards can be
connected to big query services to gain
actionable build insights across projects

- Build volume
- Environment
- Build Failures
- Build Deprecations
- Plugins
- Networking
- Parallelization and resource usage
- Build Caching
- Settings

More build models and pre-built dashboards coming with every Develocity release.

Alerts can be implemented via Grafana
Alerting or by combining different cloud

provider services
- Example:

- Event Bridge Scheduler
- Lambda function
- Simple notification service (SNS)

All-in-one reporting kit can be used
to fetch, store, query, and visualize

build data

Customers may prefer different
reporting outputs to surface the

build insights

Reports combining explanations and
numeric results are another way to

surface actionable build insights

Use cases

Inactive project causing
 high CI build queues

NPM & Python build insights coming in 2025

High dependency download rate
overloading the infrastructure

High dependency download rate
overloading the infrastructure

Ephemeral build slow-down mitigation coming in 2025

Network instabilities causing half the build
volume to run without build caching

Network instabilities causing half the build
volume to run without build caching

JDK usages not in compliance
with company policies

Develocity provides comprehensive build data
and enables instant build data exploration

to improve the developer toolchain

VISIT US
Want to learn more about Develocity, or

want to work on Develocity?

Visit us at the booth in the lounge!

THANKS
lploix@gradle.com

etienne@gradle.com

gradle.com/careers

mailto:lploix@gradle.com
mailto:etienne@gradle.com

