Moving Fast and Reducing Risk

Using LLMs in Release Deployment

DPE 2024 – San Francisco, CA, USA

Rui Abreu

Moving Fast vs. Risk vs. Quality

Release Deployment

At Meta scale, **continuous delivery** of new features falls back on the **engineer** writing and reviewing the code.

Authoring Code @ Meta

Risk Awareness

Scenario: Code Freezes

Ensure **stability** and **reliability** during critical periods

Observed during certain periods of the year.

Suspend changes to its production systems to minimize outages (aka SEVs)

Developers can't push new code, and ongoing deployments must be completed before the freeze starts.

Unlike traditional code freeze, Meta's code freeze is a code pause or delay where code isn't landed into the monorepo for a short period of time.

The code freeze process has evolved over time, from being based on release engineering team decisions to individual engineers making the decision to land a diff.

💥 Code freezes impacts velocity / productivity!

How to Deal with Code Freezes

100% Gating
No code is allowed to land!

Different gating levels. E.g.,
 No gating
 Weekend gating (top 5% risky diffs)
 Medium impact on end-users (top 10% risky diffs)
 High impact on end- users (top 50% risky diffs)

Increasing developer productivity requires being able to label a code change as being high / low risk!

Risk Prediction Models

- 4 Logistic Regression Models
 - Our baseline regression model captures 18.7%, 27.9%, and 84.6% of SEVs, while respectively gating the top 5% (weekend), 10% (yellow), and 50% (red) of risky diffs
- ✤ BERT-based model
 - StarBERT only captures 0.61×, 0.85×, and 0.81×^{*}
 * as many SEVs as the logistic regression for the 5%, 10%, and 50% gating thresholds, respectively
- ✤ Generative LLMs
 - iCodeLlama-34B: 0.58×, 0.65×, and 0.82×
 - iDiffLlama-13B: 0.65×, 0.81×, and 0.90×
- ✤ Risk-aligned LLMs
 - iCodeLlama-34B: 1.26×, 1.28×, and 0.98×
 - iDiffLlama-13B: 1.40×, 1.52×, 1.05×

P DiffLama-13B-risk-aligned is the best performing model and is planned to replace the logistic regression model in production.

BERT-based

Generative LLMs

Risk-aligned LLMs

Features for the Models

Feature type	Feature used in Logistic Regression					
Diff	log of the added and deleted SLOC relative to size of file (ratio)					
	New files created by the diff (boolean)					
	Diff only creates new files (boolean)					
Diffusion	log of the number of files in this diff					
2	log of the number of authors that modified changed files					
Criticality	Previous SEV in the file (boolean)					
	Previous SEV in the folder (boolean)					
	Is file involved in high-criticality service (boolean)					
File	Total logical complexity of files touched in this diff					
	Programming language (seven boolean indicators if at least one file in that language is modified)					
Expertise	If the author is the original creator of the file					
	Number of diffs previously landed by the author					

Feature type	Feature fed to the LLM
Diff Title	Title of the diff, typically a concise description of the code change in a few words
Test Plan	Commands (build, lint, tests) executed by the diff author to validate the code changes
Code changes	Filenames and the corresponding code changes in the standard unified diff ("unidiff") format

Dataset

	diff closing data from	diff closing data to	sample size	SEV count/rate
Training	2022-01-01	2023-05-04	855282	1981 (0.23%)
Validation	2023-05-05	2023-05-06	120967	214 (0.18%)
Testing	2023-07-01	2023-10-02	181052	305 (0.17%)

A Extremely imbalanced dataset (rare events!) **C** Hence optimizing for recall (and not precision)

Detailed Results

Model	Weekend $(g = 5\%)$		Yellow $(g = 10\%)$		Red (g = 50%)	
	SEVs Captured	vs Regression	% SEVs Captured	vs Regression	% SEVs Captured	vs Regression
Logistic Regression	18.7 %	- ×	27.9 %	- ×	84.6 %	- x
StarBERT	11.5 %	0.61 ×	23.6 %	$0.85 \times$	68.9 %	0.81 ×
iCodeLlama-34B	10.8 %	0.58 ×	18.0 %	0.65 ×	69.2 %	$0.82 \times$
iCodeLlama-34B risk aligned	23.6 %	$1.26 \times$	35.7 %	$1.28 \times$	83.0 %	$0.98 \times$
iDiffLlama-13B	12.1 %	0.65 ×	22.6 %	0.81 ×	75.7 %	0.90 ×
iDiffLlama-13B risk aligned	26.2 %	1.40 ×	42.3 %	1.52 ×	88.5 %	1.05 ×

Conclusions

Discussed (ML-based) approaches to code freeze that will improve engineering productivity via unfreeze by only gating changes that are likely to lead to SEVs

We have shown that the use of ML models can significantly improve the accuracy of diff risk scoring, which can help developers make more informed decisions about which diffs to gate.

🔬 Results

b Logistic regression outperformed the RoBERTa-based models.

The generative LLM models showed promising results

🔽 iDiffLlama-13B, when risk aligned, model capturing the most SEVs among all models tested.

Session

Karim Nakad

Meta

 ∞

Tue, Sept 24 at 11:00am 8 60mins

Karim will discuss theoretical and practical ways to measure and improve productivity, whether you're early in your developer productivity journey or a seasoned expert. He will describe common pitfalls when it comes to measuring and surfacing productivity metrics on a dashboard. He will explain the problem with treating dashboards as the end result, and offer an alternative focused directly on productivity improvements.

GET YOUR TICKET

T Keynote

Kelly Hirano, Akshay Patel

Meta

Wed, Sept 25 at 9:30am 20mins

Meta's approach to a Productivity framework and our journey tying it to both business outcomes and developer happiness.

GET YOUR TICKET

Brought to you by **Gradle** Inc

Adam Mccormick Meta

3

Wed, Sept 25 at 3:00pm **&** 60mins

Session

The biggest threats to the longterm health of any development organization are brain-drain and burnout. Retaining the people who make your organization successful and keeping them functioning are the most critical objectives in productivity engineering. Yet to many companies, these ideas seem like an afterthought or a convenience rather than the critical components they are. Come with me as I explore a couple of the worst choices you can make in structuring your dev organization and what to do instead.

GET YOUR TICKET

Brought to you by Saradle, Inc

Moving Faster and Reducing Risk

Using LLMs in Release Deployment

DPE 2024 – San Francisco, CA, USA

Rui Abreu

