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1 Android Repository 

Allows code sharing across projects

15 Gradle Projects 
910 Gradle Modules

100+ Android Devs 
1000+ Merged PRs (monthly)

27000+ Unit Tests 
900+ Snapshot Tests

800+ Weekly PR Builds 
200+ Weekly Master Builds
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Android PR Build Job 

Required for any code change to the repository

BUILD PROJECTS

TRANSLATIONS

TOOLS

KICKS OFF SINGULAR 
WORKFLOWS 

NUMEROUS TOOLS JOBS  
(EX: GITSTREAM, DANGER)

WORKFLOW PER PROJECT
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Android PR Build Job 

Each project has a number of jobs kick off

BUILD PROJECTS

TRANSLATIONS
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SNAPSHOTS  
TESTS

INTEGRATION 
TESTS

UI TESTS UPLOAD JOB

TOOLS



BUILD PROJECTS

LINTBUILD UNIT TESTSDETEKT

INTEGRATION 
TESTS

SNAPSHOTS UPLOAD JOBUI TESTS

LINTBUILD UNIT TESTSDETEKT

INTEGRATION 
TESTS

SNAPSHOTS UPLOAD JOBUI TESTS

LINTBUILD UNIT TESTSDETEKT

INTEGRATION 
TESTS

SNAPSHOTS UPLOAD JOBUI TESTS

LINTBUILD UNIT TESTSDETEKT

INTEGRATION 
TESTS

SNAPSHOTS UPLOAD JOBUI TESTS

LINTBUILD UNIT TESTSDETEKT

INTEGRATION 
TESTS

SNAPSHOTS UPLOAD JOBUI TESTS

LINTBUILD UNIT TESTSDETEKT

INTEGRATION 
TESTS

SNAPSHOTS UPLOAD JOBUI TESTS

LINTBUILD UNIT TESTSDETEKT

INTEGRATION 
TESTS

SNAPSHOTS UPLOAD JOBUI TESTS

LINTBUILD UNIT TESTSDETEKT

INTEGRATION 
TESTS

SNAPSHOTS UPLOAD JOBUI TESTS

LINTBUILD UNIT TESTSDETEKT

INTEGRATION 
TESTS

SNAPSHOTS UPLOAD JOBUI TESTS

8



9

Build Times Kept Rising 

Additional jobs and projects continuously added 
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Understanding the Problem 

Lack of Observability made the problem feel subjective

“The build feels like it’s gotten slower”

“The builds take forever now”

“Why are the builds so much longer now?”



TOOLS & DATA 
Develocity
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Develocity 

Visibility for builds across CI and Dev machines

• Integrate Common Custom User Data Gradle Plugin 
Enhances published build scans by adding a set of tags, links and custom values 

• Added custom values to query on different data 
Allowed us to debug builds across different machine types 
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Develocity 

Custom build scan values to support debugging



TOOLS & DATA 
Datadog
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Datadog 

Insights into the entire end to end CI pipeline

• Establish core build KPIs  that we wanted to track 
Build times p50/p95, build failure rate, uptime 

• Build Error Transparency 
When the build fails, classify and track those error types 

• Build Resource Usage 
Understand how we can optimize the hardware we’re running on 
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Datadog 

Core build KPIs  



TOOLS & DATA 
Gradle Profiler
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Gradle Profiler 

Profiling and benchmarking for Gradle builds

• Build changes are hard to measure and high risk  
Gradle Profiler helped us develop confidence in all build changes we made 

• Setup CI workflow for the Gradle Profiler 
Can create a performance scenario and add branches to compare 

• Local Usage 
Quickly validate and generate build scan diffs 
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Gradle Profiler 

Test early adoption of new Gradle properties
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Gradle Profiler 

Test early adoption of new Gradle properties
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Gradle Profiler 

Evaluate migration from Dagger KAPT to KSP

OOM
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Gradle Profiler 

Evaluate migration from Dagger KAPT to KSP

OOM



PERSISTENCE 
Putting tools & data to work
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Persistence 

Putting tools & data to work

• Optimizing unit test performance  
Tracking down unit test issues on CI 

• Identifying high cost, low value jobs 
What PR jobs provide the least ROI 

• AWS Infrastructure changes 
Using the right instance types for our builds 
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Optimizing unit test performance 
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Unit Test Performance 

Investigation into tasks with high “own times”



27

Unit Test Performance Optimizations 

Understanding impact of maxParallelForks

// Gradle rec https://docs.gradle.org/current/userguide/performance.html 
tasks.withType<Test>().configureEach { 
    maxParallelForks = 

 (Runtime.getRuntime().availableProcessors() / 2).coerceAtLeast(1) 
}
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Unit Test Performance Optimizations 

Profile with different number of maxParallelForks
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Unit Test Performance 

Current build infrastructure benefited from single fork

tasks.withType<Test>().configureEach { 
// more than 1 fork causes memory pressure on CI and longer test times 

    maxParallelForks = 1  
}
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Unit Test Performance 

Significant decrease in unit test duration on PR jobs

p95 
58m -> 40m 

p50 
25m -> 24m
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Eliminating high cost, low value jobs 
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Eliminating high cost, low value jobs 

Legacy codebase accumulates jobs over time

• Take inventory of all jobs and tasks run on PRs 
Many jobs added may no longer have the same value 

• Identify high cost, low value jobs 
Long running jobs that have a low chance of breaking on any single commit 
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Building obfuscated release builds on PRs 

Scans showed DexGuard task was very time consuming

• Obfuscating release builds was 30-50% of total PR build time 
Very rarely would a release build fail compilation on CI 
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p95 
44m -> 34m 

p50 
35m -> 25m

Building obfuscated release builds on PRs 

Results without DexGuard task running
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Identifying slow tests 
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Identifying slow tests 

Investigation into unit test tasks with longest times
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Identifying slow tests 

Understanding the value and cost of Robolectric test

• Robolectric tests were mostly redundant and no longer high value 
Added to codebase before we had a consistent and testable architecture 

• Small number of Robolectric tests took significant runtime 
2% of tests were Robolectric yet they accounted for 40% of test time
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Identifying slow tests 
Results from fully removing all Robolectric tests

p95 
41m -> 26m 

p50 
28m -> 17m
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AWS infrastructure changes 
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AWS infrastructure 
Infrastructure change caused spike in PR times
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AWS infrastructure 
500x increase in fingerprinting inputs indicates I/O bottleneck
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AWS infrastructure 
Move builds to NVMe disks for higher IOPS
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AWS infrastructure 
Significant improvement for largest project build task

p95 
27m -> 21m 

p50 
20m -> 11m



The Results
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More improvements 

Additional investments drove build times down even more

• Utilizing Develocity’s Predictive Test Selection 

• Added Develocity’s Test Distribution  

• Prefetch dependencies daily for ephemeral CI runners 

• Removed Dexguard in favor of R8 
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Persistence 

PR build times in September 2024 vs July 2023

p95 

64m -> 30m
p50 

44m -> 16m




