
Reducing Build Times by 50%

A Story of Tools, Data, and Persistence

DPE Summit 2024

￼1

Ward Bonnefond
Senior Staff Engineer

Douglas Crossley
Director of Engineering, Mobile

The Problem

2

Peloton Android App Ecosystem

2012

3

Peloton Android App Ecosystem

2024

4

5

1 Android Repository

Allows code sharing across projects

15 Gradle Projects
910 Gradle Modules

100+ Android Devs
1000+ Merged PRs (monthly)

27000+ Unit Tests
900+ Snapshot Tests

800+ Weekly PR Builds
200+ Weekly Master Builds

6

Android PR Build Job

Required for any code change to the repository

BUILD PROJECTS

TRANSLATIONS

TOOLS

KICKS OFF SINGULAR
WORKFLOWS

NUMEROUS TOOLS JOBS
(EX: GITSTREAM, DANGER)

WORKFLOW PER PROJECT

7

Android PR Build Job

Each project has a number of jobs kick off

BUILD PROJECTS

TRANSLATIONS

BUILD LINT DETEKT UNIT TESTS

SNAPSHOTS
TESTS

INTEGRATION
TESTS

UI TESTS UPLOAD JOB

TOOLS

BUILD PROJECTS

LINTBUILD UNIT TESTSDETEKT

INTEGRATION
TESTS

SNAPSHOTS UPLOAD JOBUI TESTS

LINTBUILD UNIT TESTSDETEKT

INTEGRATION
TESTS

SNAPSHOTS UPLOAD JOBUI TESTS

LINTBUILD UNIT TESTSDETEKT

INTEGRATION
TESTS

SNAPSHOTS UPLOAD JOBUI TESTS

LINTBUILD UNIT TESTSDETEKT

INTEGRATION
TESTS

SNAPSHOTS UPLOAD JOBUI TESTS

LINTBUILD UNIT TESTSDETEKT

INTEGRATION
TESTS

SNAPSHOTS UPLOAD JOBUI TESTS

LINTBUILD UNIT TESTSDETEKT

INTEGRATION
TESTS

SNAPSHOTS UPLOAD JOBUI TESTS

LINTBUILD UNIT TESTSDETEKT

INTEGRATION
TESTS

SNAPSHOTS UPLOAD JOBUI TESTS

LINTBUILD UNIT TESTSDETEKT

INTEGRATION
TESTS

SNAPSHOTS UPLOAD JOBUI TESTS

LINTBUILD UNIT TESTSDETEKT

INTEGRATION
TESTS

SNAPSHOTS UPLOAD JOBUI TESTS

8

9

Build Times Kept Rising

Additional jobs and projects continuously added

10

Understanding the Problem

Lack of Observability made the problem feel subjective

“The build feels like it’s gotten slower”

“The builds take forever now”

“Why are the builds so much longer now?”

TOOLS & DATA
Develocity

11

12

Develocity

Visibility for builds across CI and Dev machines

• Integrate Common Custom User Data Gradle Plugin
Enhances published build scans by adding a set of tags, links and custom values

• Added custom values to query on different data
Allowed us to debug builds across different machine types

13

Develocity

Custom build scan values to support debugging

TOOLS & DATA
Datadog

14

15

Datadog

Insights into the entire end to end CI pipeline

• Establish core build KPIs that we wanted to track
Build times p50/p95, build failure rate, uptime

• Build Error Transparency
When the build fails, classify and track those error types

• Build Resource Usage
Understand how we can optimize the hardware we’re running on

16

Datadog

Core build KPIs

TOOLS & DATA
Gradle Profiler

17

18

Gradle Profiler

Profiling and benchmarking for Gradle builds

• Build changes are hard to measure and high risk
Gradle Profiler helped us develop confidence in all build changes we made

• Setup CI workflow for the Gradle Profiler
Can create a performance scenario and add branches to compare

• Local Usage
Quickly validate and generate build scan diffs

19

Gradle Profiler

Test early adoption of new Gradle properties

20

Gradle Profiler

Test early adoption of new Gradle properties

21

Gradle Profiler

Evaluate migration from Dagger KAPT to KSP

OOM

22

Gradle Profiler

Evaluate migration from Dagger KAPT to KSP

OOM

PERSISTENCE
Putting tools & data to work

23

24

Persistence

Putting tools & data to work

• Optimizing unit test performance
Tracking down unit test issues on CI

• Identifying high cost, low value jobs
What PR jobs provide the least ROI

• AWS Infrastructure changes
Using the right instance types for our builds

25

Optimizing unit test performance

26

Unit Test Performance

Investigation into tasks with high “own times”

27

Unit Test Performance Optimizations

Understanding impact of maxParallelForks

// Gradle rec https://docs.gradle.org/current/userguide/performance.html
tasks.withType<Test>().configureEach {
 maxParallelForks =

 (Runtime.getRuntime().availableProcessors() / 2).coerceAtLeast(1)
}

28

Unit Test Performance Optimizations

Profile with different number of maxParallelForks

29

Unit Test Performance

Current build infrastructure benefited from single fork

tasks.withType<Test>().configureEach {
// more than 1 fork causes memory pressure on CI and longer test times

 maxParallelForks = 1
}

30

Unit Test Performance

Significant decrease in unit test duration on PR jobs

p95
58m -> 40m

p50
25m -> 24m

31

Eliminating high cost, low value jobs

32

Eliminating high cost, low value jobs

Legacy codebase accumulates jobs over time

• Take inventory of all jobs and tasks run on PRs
Many jobs added may no longer have the same value

• Identify high cost, low value jobs
Long running jobs that have a low chance of breaking on any single commit

33

Building obfuscated release builds on PRs

Scans showed DexGuard task was very time consuming

• Obfuscating release builds was 30-50% of total PR build time
Very rarely would a release build fail compilation on CI

34

p95
44m -> 34m

p50
35m -> 25m

Building obfuscated release builds on PRs

Results without DexGuard task running

35

Identifying slow tests

36

Identifying slow tests

Investigation into unit test tasks with longest times

37

Identifying slow tests

Understanding the value and cost of Robolectric test

• Robolectric tests were mostly redundant and no longer high value
Added to codebase before we had a consistent and testable architecture

• Small number of Robolectric tests took significant runtime
2% of tests were Robolectric yet they accounted for 40% of test time

38

Identifying slow tests
Results from fully removing all Robolectric tests

p95
41m -> 26m

p50
28m -> 17m

39

AWS infrastructure changes

40

AWS infrastructure
Infrastructure change caused spike in PR times

41

AWS infrastructure
500x increase in fingerprinting inputs indicates I/O bottleneck

42

AWS infrastructure
Move builds to NVMe disks for higher IOPS

43

AWS infrastructure
Significant improvement for largest project build task

p95
27m -> 21m

p50
20m -> 11m

The Results

44

45

More improvements

Additional investments drove build times down even more

• Utilizing Develocity’s Predictive Test Selection

• Added Develocity’s Test Distribution

• Prefetch dependencies daily for ephemeral CI runners

• Removed Dexguard in favor of R8

46

Persistence

PR build times in September 2024 vs July 2023

p95

64m -> 30m
p50

44m -> 16m

