
Ongoing Research on Software Engineering Productivity

DPE Summit 2024
Simon Obstbaum
Yegor Denisov-Blanch
Stanford University

September 2024

Research Team (not exhaustive)

2

 Simon
 Obstbaum

 Yegor
Denisov-Blanch

Prof.
Michal Kosinski

• Ex-CTO, Crunchyroll & Ellation

• Portfolio of video streaming
services, 100M+ users

• Hundreds of engineers
across 20+ distributed teams

• Founder & ex-CEO, YOPESO
(software dev. house, 250+
engineers) (exited)

• Stanford Graduate Researcher
since 2022

• Research focus: data-driven
decision-making in software
engineering

• Digital transformation for F100
company with 6,000+ engineers

• Stanford Professor (top 1% most
cited researchers)

• Research focus: human behavior
in a digital environment

• Cambridge Analytica
whistleblower

• Stanford Computer Science
Postdoc

3

What we’ll cover

1 Motivation Behind Our Research

2 Output vs Outcomes

3 Our Latest Research

4 Case Studies

5 Ongoing Research

What are people using today to measure team productivity?

4

Lines of Code

Surveys DORA

Story Points# of Commits/PRs

 Existing methods
 don’t accurately
measure
productivity

LoC, Commits, and PRs don’t measure productivity

5

Lines of Code

of Commits
of Pull Requests

Problem Counterproductive Incentive

More lines != more
productivity

Not comparable across
languages

Encourages verbose,
redundant code

More commits & PRs !=
more productivity

Encourages artificially
small commits/PRs

Story Points are subjective and also don’t measure productivity

6

Story Points

Problem Counterproductive Incentive

Subjective & not comparable
across teams

More story points =/= more
productivity

Encourages inflating the
number of points a task
will require to complete

Self-assessment surveys are an inaccurate way to measure developer
productivity

7

 We surveyed 43 software engineers from a statistically representative sample, asking them to rate their productivity on a scale from 0 to 100 in 5-percentile increments, relative to the global average over the past year. We
then compared these self-assessments with their actual performance, recorded over the same period, and rounded to the nearest 5 percentile.

Self-assessment surveys (perceived
productivity) are an ineffective predictor of

productivity

People misjudge their productivity by ~30
percentile points

Only 1 in 3 people estimated their
productivity within one quartile

Surveys are valuable for understanding
employee satisfaction and morale

0.17
Correlation (r)

0.03
R2

Measured

DORA Metrics don’t measure productivity, they measure DevOps
performance

8

Deployment Frequency

Lead Time for Changes

Time to Restore Service

Change Failure Rate

Flow

Reliability

1

2

3

4

Deployment sizes aren't constant
within & across teams

The Flow metrics are gameable

Problems with using DORA Flow metrics as
a measure of productivity:

needs

The 4 DORA Metrics:

1

2

What a good metric might facilitate

Better Management
Decisions

Helps prevent:
• Misguided decisions
• Wasted resources
• Project delays

Fosters
Innovation

Good metrics don’t get
in the way of innovation

Motivates
Top Performers

Recognizing hard work and
innovation keeps top
performers engaged

9

The difference between Output and Outcomes in Software Engineering

10

Output Outcomes

Tangible work produced by engineers

Velocity, building things right

Business results that stem from
building the right things

Feature prioritization

11

Our research focuses on output:

Easier to gather
objective &
comparable data
across orgs

1

Product prioritization
frameworks exist to
drive “building the right
things”

2

All else equal, high
output is better than
low output

3

Measuring both output and outcomes is necessary to achieve a
high-performing software org

12

Lo
w

H
ig

h

 En
gi

ne
er

in
g

ou
tp

ut

 Business outcomes
Poor Good

• High-performing team
• Building the wrong things
Poor business outcomes regardless
of team performance

• High-performing team
• Building the right things
Can only get to this quadrant if you
measure both

• Low-performing team
• Building the right things
Strong market demand leads to
success despite quality & uptime
issues

• Low-performing team
• Building the wrong things

2

1

4

3

1 Problematic

2 High output alone doesn't
guarantee success; it needs to be
aligned with building the right things

3 Room for improvement in execution

4 Best teams optimize both output
and outcomes

Need to measure both
output & outcomes

Our model quantitatively evaluates software engineering output by analyzing
source code changes on a per-commit basis

13

How does the algorithmic model work?

Git Repository Algorithmic
Model

Output
Dashboard

Quantifies
changes based on

key dimensions

Combines with Git
metadata to form
a productivity

metric

Analyzes the
source code

changes of every
commit

1 2 3

Cohesion Complexity Coupling

Data Structures Interfaces Methods

Persistence Layers APIs Consumed Architectural Patterns

Dependencies Dependency Injections …and more

A B C

10+ Supported Languages /
Frameworks

Our current dataset

14

50,000+
engineers

Millions of
commits

~2B Lines
of Code

80% private
repos

Our research portal provides insights to research participants

15

visit softwareengineeringproductivity.stanford.edu

How did we test the accuracy of our model?

16

10 Experts 70 commits 7 questions 4,900 data
points

Our model via
LOOCV (10)

70 commits 7 questions 4,900 data
points

x x =

x x =

 Intra-Class
Correlation Coefficient:
do humans agree with one
another?

Very strongly,
ICC2k >0.80

LOOCV: Leave-One-Out Cross-Validation
Model calibrated on all raters except one, which
is used for testing predictive ability
Repeated 10 times

Correlation: How well does
our model align with human
evaluations?

Exceptionally,
r = >0.85

Power Analysis: Is this
dataset large enough?
 p <0.01

Yes

Our metric (Output Units) doesn’t always align with traditional metrics

17

~0.85 ICC2k

Validated Accuracy

r = >0.80

High Correlation w/ Expert
Evaluations

<1 second

Fast Commit Processing

Easy to set up & participate
in research

Scalable Across Orgs.

Reads the source code

Improvement over
traditional metrics

Case Study 1: Use internal Benchmarking to understand team level
differences and best practices

18

3
0

4
0

5
0

Q1 22 Q2 22 Q3 22 Q4 22 Q1 23 Q2 23

Team
A
Output

Team
B
OutputU

ni
ts

 o
f O

ut
pu

t

Team A Team B Delta

Avg.
Output 41 33.2 -20%

Cost ($K) 1,550 890 -40%

Cost/
Output 37.8 26.8 -30%

Software Engineering Output Comparison

Although Team A delivers more output, Team B is ~30% more ‘cost efficient’

Team B is 30% more
‘cost efficient’

Intentionally simplified

Our Metric + Other Data = Deeper Insights

Case Study 2: When team size tripled due to VC money, output/employee
decreased sharply

19

 2020 2021 2022 2023 2024

 Team Size
 Output/Employee

H
ea

dc
ou

nt

O
ut

pu
t/E

m
pl

oy
ee

Period Pre-VC Money Post-VC Money
Growth
Factor
(Approx.)

Avg. Team
Size 20 66 3.3x

Avg. Cost 2,200 6,980 3.2x

Avg. Output 2,010 2,930 1.5x

Team Size vs Output/Employee

Output
increased by

1.5x

Team Size & Cost
increased by 3x

VC Money
Injection

Brooks’ Law

Self-assessment of productivity does not agree
with our measurement

Companies with a higher output achieve better
outcomes

Prediction vs sprint outcomes

Ongoing Research

20

Combination of our measurement with LLMs1

Cross-language validation of our measurement2

Comparison to other methods of measuring
productivity3

4

5

6

Get involved in our research

21

How can you help:

Become an expert rater1

Join the research with your org as a
participant2

Give feedback on our latest paper3

softwareengineeringproductivity.stanford.edu

Backup / Appendix

22

[1] Deployment Frequency: DORA Metrics Flaw Example (1/2)

23

Te
am

 A
Te

am
 B

• Building an iOS app

• Releases a new version on the App Store
2x a Quarter

• Releasing a new version more
frequently is not possible:

• Daily updates would annoy users

• Takes time to get AppStore approval

• Building a website-based service

• Can release a new version multiple
times a day

• Users get latest version when they
refresh the page

• No AppStore approval

Time (Days)

S
iz

e
of

 C
od

e
R

el
ea

se
d

(Q
ty

)

0

5

9
5

10
0

Time (Days)

S
iz

e
of

 C
od

e
R

el
ea

se
d

(Q
ty

)

of Code
Releases

Size of Each
Release

Total Qty
Released

2 100 200

of Code
Releases

Size of Each
Release

Total Qty
Released

90 1 90

x =

x =

Performance
According to DORA

Metrics

Medium
(Bottom 30%)

Performance
According to DORA

Metrics

Elite
(Top 30%)

2x big
releases

Daily small
releases

Quantity of Code Released / Day

Quantity of Code Released / Day

According to DORA, Team A is
Bottom 30% yet delivers >2x more

code than Team B, who is Top
30%

24

Te
am

 A
Te

am
 B

• Releases code 2 times a day

• Releases 1 size unit of code every
release

• Also releases code 2 times a day

• Releases 5 size units of code every
release

of Code
Releases /

Day

Size of Each
Release

Total Qty
Released /

Day

2 1 2x =

Performance
According to DORA

Metrics

Performance
According to DORA

Metrics

Elite
(Top 30%)

According to DORA, both Teams
are Elite, yet Team B delivers 5x

more code than Team A

of Code
Releases /

Day

Size of Each
Release

Total Qty
Released /

Day

2 5 10x =

Elite
(Top 30%)

[1] Deployment Frequency: DORA Metrics Flaw Example (2/2)

[2]Lead time for Changes: DORA Metrics Flaw Example (1/2)

25

Te
am

 A
Te

am
 B

• Building an iOS app

• Releases a new version on the App Store
2x a Quarter

• Releasing a new version more
frequently is not possible:

• Daily updates would annoy users

• Takes time to get AppStore approval

• Building a website-based service

• Can release a new version multiple
times a day

• Users get latest version when they
refresh the page

• No AppStore approval

Time
(Days)

S
iz

e
of

 C
od

e
R

el
ea

se
d

(Q
ty

)
0

5

100

Time
(Days)

S
iz

e
of

 C
od

e
R

el
ea

se
d

(Q
ty

)

of Code
Releases

Size of Each
Release

Total Qty
Released

2 100 200

of Code
Releases

Size of Each
Release

Total Qty
Released

90 1 90

x =

x =

Performance
According to DORA

Metrics

Medium
(Bottom 30%)

Performance
According to DORA

Metrics

Elite
(Top 30%)

2x big
releases

Quantity of Code Released / Day

Quantity of Code Released / Day

Daily small
releases

According to DORA, Team A is
Bottom 30% yet delivers >2x more
code than Team B, who is Top 30%

Time Between
Releases 30 days

Time Between
Releases <1 day

26

Te
am

 A
Te

am
 B

• Releases code 2 times a day

• Releases 1 size unit of code every
time

• Also releases code 2 times a day

• Releases 5 size units of code every
time

of Code
Releases /

Day

Size of Each
Release

Total Qty
Released /

Day

2 1 2x =

Performance
According to DORA

Metrics

Performance
According to DORA

Metrics

Elite
(Top 30%)

According to DORA, both Teams are
Elite, yet Team B delivers 5x more

code than Team A

of Code
Releases /

Day

Size of Each
Release

Total Qty
Released /

Day

2 5 10x =

Elite
(Top 30%)

[2]Lead time for Changes: DORA Metrics Flaw Example (2/2)

Time Between
Releases <1 day

Time Between
Releases <1 day

27

Why DORA Metric #2, Lead Time for Changes, is Flawed

Lead Time for Changes is ALSO NOT a measure of output 1

It is also a measure of to what degree you’ve adopted a CI/CD (Continuous
Integration / Continuous Development) way of working2

CI/CD practices have gained such widespread adoption that it is very easy to rank
“Elite” in this metric3

This metric will become irrelevant very soon5

For companies that can’t release frequently (e.g. iOS Apps, Financial Services,
etc.) this metric is completely meaningless4

28

Why DORA Metric #3, Time to Restore Service, is Flawed

Time to Restore
Service When a software outage occurs, how long does it take to restore service?

This is an almost meaningless metric. When was the last time you ran into a site
going down for a week, let alone 6 months?1

Orgs with teams dispersed across timezones will perform better by default –
outages can happen during the middle of the night2

29

Why DORA Metric #4, Change Failure Rate, is Flawed

Change Failure Rate What % of your software versions have an incident/bug?

Teams deploying less frequently (and therefore with bigger deploys) will have a
higher chance of each deploy being flagged as bugged1

This is not a typo

30

Percentile Work from
Home Output

Work from
Office Output

% Difference

5 0.03 0.25 -87.9%

25 0.52 0.77 -32.6%

50 0.92 1.17 -21.3%

75 1.78 1.94 -7.9%

95 3.94 3.44 +14.5%

Quartile Work from
Home Output

Work from
Office Output

% Difference

Q1 (0-25) 0.26 0.47 -45.12%

Q2 (25-50) 0.72 0.96 -25.1%

Q3 (50-75) 1.32 1.46 -9.6%

Q4 (75-100) 3.09 2.74 +12.9%

Bottom 50% 0.49 0.72 -31.8%

Top 50% 2.24 2.12 +5.6%

Selective underperformance
in remote work

• The lowest-performing 12% of
engineers who work from
home produce less than 5%

of the output that a median
engineer delivers

But also exceptional
overperformance

• The top 16% of engineers
working remotely exhibit an
output equivalent to or
exceeding the top 5% of
office-based engineers

Preliminary Research Results (July 2023)
The bottom 25% of software engineers working from home severely
underperform, while the top 10% significantly outperform their office-based
counterparts

