
Automating Build Failure Analysis Using
Semantic Embeddings
Justin Merkel, Luke Daley

What are we automating and why?

Analyzing build and test failures

❏ Looking for keywords
❏ Gathering context
❏ Identifying relationships to other failures
❏ Looking for path to root cause

Significantly accelerated by expert and historical knowledge.

Why automate failure analytics?

❏ Faster troubleshooting
❏ More context
❏ Identify the important information
❏ Associate with known/potential fixes

❏ More accurate data at scale
❏ Reduce toil
❏ Data-driven prioritization
❏ Trending and tracking
❏ Mining and research

Figuring out how to approach the
problem

Why base our approach on text data?

❏ We started with a more “structured data” approach, but this was quickly
determined to not capture enough information about the failure to be useful

❏ Text data quickly became our data of choice, because…
a. All build failures have some descriptive text in the form of exception/error

messages
b. It is typically expected that information about the failure is present in the logs
c. Text is extremely rich and descriptive

Initial attempts

❏ We started to work with simple, NLP-based approaches
❏ These methods are often based on word counts within a piece of text
❏ These approaches can provide decent results in some cases, but never work

as a holistic solution

Process ‘node’ failed with exit code 1 Process ‘node’ failed with exit code 127

Client count not connect to the server Server could not connect to the client

Test failed Test failed unexpectedly

Expected: “Could not connect to
database” actual: “null”

Could not connect to database

ReadTimeoutException timeout
occurred

JobTimeoutException timeout occurred

What does this mean?

We know that text contains rich information about failures that occurred

BUT

Text data can be messy, complex, and often relies on domain expertise
and context

Semantic embeddings for failures

Failure embeddings – what are they?

❏ Embeddings are vectors of numbers which capture the meaning of a piece of
text.

❏ We train an language model to generate embeddings which capture the
meaning of a piece of text in the context of build failure analysis.
→ We aim to create embedding vectors which represent the Action and

Fault present in the text chunk.
❏ The meaning of an embedding can efficiently be compared to the meaning of

another embedding by calculating the cosine similarity.

cosSim(,) = 0.87

Failure embeddings – how do they work?

Invalid HTTP response {status
code: 500}

Invalid HTTP response
{status code: 401}cosSim(,) = 0.43

Invalid HTTP response {status
code: 500}

Problem accessing API,
message: Internal Server

Error

cosSim(,) = 0.01Invalid HTTP response {status
code: 500}

Compilation failed, see logs
for details

Failure embeddings – how are they generated?

❏ Embeddings are generated by a bi-encoder language model, trained on a
dataset of pairs of text and an associated similarity score.

❏ We start with fine-tune a pre-trained model, then fine-tune it to work optimally
for failure analytics tasks.

❏ Text chunks in the training data are collected from a variety of different
projects with a variety of different languages and frameworks.

Failure embeddings – what can we use them for?

❏ Effective failure embeddings could be used as the foundation for automating
a number of useful failure analytics workflows…
a. Categorization of failures into pre-defined groups
b. Creating groups of related failures
c. User specified failure categories and groups
d. Advanced failure search
e. Deeper test failure analytics
f. Root cause analysis
g. And more…

How does this work on real data?

TaskExecutionException: Execution failed for task
':app:test'

Caused by: VerificationException: There were failing
tests. See the report at index.html

[INFO] Beginning test executions…
[INFO] Setting up environment
[ERROR] TestClass > test everything works FAILED

BindException: address already in use
[INFO] Build complete!

Exceptions ->

Log Output ->

Build: “abcdefg”, Failure: #1

TaskExecutionException: Execution failed for task
':app:test'

[ERROR] TestClass > test everything works FAILED
BindException: address already in use

Embeddings
to keep ->

Embeddings
to filter out ->

[INFO] Beginning test executions…

Setting up test environments…

[INFO] Build complete!

Caused by: VerificationException: There were failing
tests. See the report at index.html

Vector
Database

Build: “abcdefg”, Failure: #1

Vector
Database

1. Search
Select all failures that
contain failing tests
caused by a
BindException

2. Clustering
Select all failures that
have occurred on CI in the
last 3 days, grouped by
cosine similarity

3. Classification
Select all failures caused
by lint checks failing

Classification Model

Failure embeddings – pitfalls to watch out for

❏ Text data is messy. It is easy to confuse the model and create embeddings
that overgeneralize if you’re not careful.
→ Exception classes can appear in code snippets
→ Error messages can be part of test assertions meant to test error message validity
→ Test classes can appear in text chunks that are describing a compilation of linting

error.
❏ Qualitative review is essential.
❏ Good embeddings alone aren’t enough, additional logic and user input is

sometimes required.

Where to next?

Where to next?

❏ Identify how and when to seek expert input
❏ Automatically detect and suggest remediations
❏ Evaluate alternative embeddings generation approaches
❏ Expand training and evaluation data by working with Develocity users
❏ Iterate towards Develocity features

Automating Build Failure Analysis Using
Semantic Embeddings
Justin Merkel, Luke Daley

